TRANSFORMERS

1. Failure of 220/33 kV, 100 MVA Power Transformer at 220/33 kV Geeta Colony substation of DTL

A. Name of Substation : 230/33kV Substation, Geeta Colony

B. Utility/Owner of substation : Delhi Transco Limited

C. Faulty Equipment : Transformer

D. Rating : 220/33kV, 100MVA

E. Make : BHEL

F. Sr. No. : 2015821

G. Year of manufacturing : 2004

H. Year of commissioning : 2005

I. Date and time of occurrence/discovery of fault : 02.02.2016

J. Information received in CEA : 04.02.2016

K. Fault discovered during : Operation

L. Present condition of equipment : Transformer is under breakdown.

M. Details of previous maintenance : On 06.11.2015, Transformer shutdown was availed for replacement of high Tan Delta Y-phase MV bushing.

N. Details of previous failure : Nil

O. Sequence of events/ Description of fault : Transformer tripped on Differential Relay, Buchholz relay, OSR & PRV. There was minor dislocation of all three HV bushings from their turrets, MV bushing flanges of Y & B phases had cracked, LV bushing of B-phase had punctured and transformer tank had cracked at a number of places, although no bulging of the tank was visible.

P. Details of Tests done after failure : Following tests were carried out:
Q. Probable cause of failure:

1. Magnetizing current in Y-phase was found to be 1.06 A which is very high as compared to 3.6 mA in R-ph and 3.5 mA in B-ph. Also, very low voltage (0.506 V) was observed in Y-ph in magnetic balance test when 231 V was applied on R-phase which indicates problem in Y-phase winding. DGA of oil indicated high concentration of Hydrogen (H2-2064ppm), Ethylene (C2H4-271 ppm), Methane (CH4-148 ppm), Acetylene (C2H2-398.8). Total Dissolved Combustible Gases (TDCG) was 3064 which is higher than normal value. These high concentration of acetylene gas could be due to high energy arcing inside the tank.

2. Significant variation was observed while comparing the pre and post fault signatures/traces of SFRA tests carried out on transformer. The test result indicates problem in core coil assembly. Operation of Differential, Buchholz, OSR & PRV relays indicates internal fault of the transformer. The internal winding insulation failure might have led to inter turn winding insulation failure, which is also supported by the test results and preliminary internal inspection.

3. High energy arcing inside the transformer tank might have led to sudden pressure rise and tripping of oil surge relay & PRV. Rate of rise of gas pressure might be very high (before operation of PRV), which might have resulted in cracks at weak areas of the transformer tank.

4. The fault is most likely in Y-ph of winding. The detailed investigation after opening of tank will provide the extent of damage, type of failure(s) and other valuable information.

2. Failure of 315 MVA, 400/220/33 kV Auto transformer at 400 kV Bawana substation of DTL

A. Name of Substation : 400 kV Bawana substation
B. Utility/Owner of substation : DTL
C. Faulty Equipment : Auto transformer
D. Rating : 315 MVA, 400/220/33 kV
E. Make : EMCO
F. Sr. No. : HT-1798
G. Year of manufacturing : 2009
H. Year of commissioning : 2010

I. Date and time of occurrence/discovery of fault : 08.03.2016 at 1201 hrs

J. Information received in CEA : 08.03.2016

K. Fault discovered during : Operation

L. Present condition of equipment : Replaced

M. Details of previous maintenance:

Tests carried out on 12.07.2010

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Test for</th>
<th>Permissible limits</th>
<th>Sample 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Water Content, ppm</td>
<td>10(Max)</td>
<td>8</td>
</tr>
<tr>
<td>2.</td>
<td>Breakdown Voltage, (rms), kV</td>
<td>60(Min)</td>
<td>80</td>
</tr>
</tbody>
</table>

Tests carried out on 19.07.2010

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Test for</th>
<th>Permissible limits</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Water Content, ppm</td>
<td>10(Max)</td>
<td>10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>2.</td>
<td>Breakdown Voltage, (rms), kV</td>
<td>60(Min)</td>
<td>72</td>
<td>72</td>
<td>73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>TEST FOR</th>
<th>PERMISSIBLE LIMITS</th>
<th>SAMPLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Appearance</td>
<td>Clear, free from sediment and suspended matter</td>
<td>Clear, free from sediment and suspended matter</td>
</tr>
<tr>
<td>2.</td>
<td>Density @ 29.5°C, gm/cm³</td>
<td>0.89(Max)</td>
<td>0.82</td>
</tr>
<tr>
<td>3.</td>
<td>Kinematic Viscosity @ 27°C, cSt</td>
<td>27(Max)</td>
<td>16</td>
</tr>
<tr>
<td>4.</td>
<td>Pour point, °C,</td>
<td>-6(Max)</td>
<td>Less than -6</td>
</tr>
<tr>
<td>5.</td>
<td>Interfacial Tension, N/m</td>
<td>0.035(Min)</td>
<td>0.039</td>
</tr>
<tr>
<td>6.</td>
<td>Flash Point, °C</td>
<td>140(Min)</td>
<td>153</td>
</tr>
<tr>
<td>7.</td>
<td>Neutralisation Value, mg/g</td>
<td>0.03(Max)</td>
<td>Nil</td>
</tr>
<tr>
<td>8.</td>
<td>Breakdown Voltage, (rms), kV</td>
<td>60(Min)</td>
<td>78</td>
</tr>
<tr>
<td>9.</td>
<td>Dielectric Dissipation Factor(Tan delta) @90°C</td>
<td>0.010(Max)</td>
<td>0.0014</td>
</tr>
</tbody>
</table>
10. Specific Resistance, X 10^{12} Ohm-cm. @90°C | 6(Min) | 60

11. Water Content, ppm | 10(Max) | 9

Tests carried out on 21.07.2010

i. PI measurement using 5 kV Megger

<table>
<thead>
<tr>
<th>REF</th>
<th>60 sec</th>
<th>600 sec</th>
<th>PI</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV+IV to EARTH</td>
<td>199.0 G Ω</td>
<td>281.0 G Ω</td>
<td>1.412</td>
<td></td>
</tr>
<tr>
<td>LV to EARTH</td>
<td>223.0 G Ω</td>
<td>260.0 G Ω</td>
<td>1.165</td>
<td></td>
</tr>
<tr>
<td>HV+IV to LV</td>
<td>163.0 G Ω</td>
<td>179.0 G Ω</td>
<td>1.098</td>
<td></td>
</tr>
</tbody>
</table>

ii. MAGNETIC BALANCE IN HV

<table>
<thead>
<tr>
<th>IX - N</th>
<th>IY – N</th>
<th>IZ – N</th>
<th>IX – N</th>
<th>IY – N</th>
<th>IZ – N</th>
<th>I mag. (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>232.4 V</td>
<td>225.6 V</td>
<td>229.4 V</td>
<td>20.24 V</td>
<td>217.8</td>
<td>--</td>
<td>2.1</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>132.0 V</td>
<td>92.0</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>229.4 V</td>
<td>20.24 V</td>
<td>217.8</td>
<td>--</td>
</tr>
</tbody>
</table>

iii. MAGNETIC BALANCE IN IV

<table>
<thead>
<tr>
<th>2X - N</th>
<th>2Y – N</th>
<th>2Z – N</th>
<th>2X – N</th>
<th>2Y – N</th>
<th>2Z - N</th>
<th>I mag. (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>229.1</td>
<td>224.4 V</td>
<td>-</td>
<td>228.7 V</td>
<td>18.6</td>
<td>223.0 V</td>
<td>--</td>
</tr>
</tbody>
</table>

iv. MAGNETIC BALANCE IN LV

<table>
<thead>
<tr>
<th>3X – 3Y</th>
<th>3Y – 3Z</th>
<th>3Z – 3X</th>
<th>3X – 3Y</th>
<th>3Y – 3Z</th>
<th>3Z – 3X</th>
<th>I mag. (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400.9V</td>
<td>400.7 V</td>
<td>-</td>
<td>347.0 V</td>
<td>--</td>
<td>202.9 V</td>
<td>49.4</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>399.6 V</td>
<td>335.6 V</td>
<td>206.9 V</td>
<td>--</td>
<td>55.6</td>
</tr>
</tbody>
</table>

v. RATIO TEST BETWEEN HV to LV

<table>
<thead>
<tr>
<th>Tap No.</th>
<th>Theoretical Ratio</th>
<th>1X</th>
<th>1Y</th>
<th>1Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>9b</td>
<td>12.12</td>
<td>12.36</td>
<td>12.12</td>
<td>12.02</td>
</tr>
</tbody>
</table>

vi. RATIO TEST BETWEEN IV to LV

<table>
<thead>
<tr>
<th>Tap No.</th>
<th>Theoretical Ratio</th>
<th>2X</th>
<th>2Y</th>
<th>2Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>9b</td>
<td>6.66</td>
<td>6.86</td>
<td>6.59</td>
<td>6.61</td>
</tr>
</tbody>
</table>

vii. RATIO TEST BETWEEN HV to IV
<table>
<thead>
<tr>
<th>Tap No.</th>
<th>Theoretical Ratio</th>
<th>1XN</th>
<th>1YN</th>
<th>1ZN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2XN</td>
<td>2YN</td>
<td>2ZN</td>
</tr>
<tr>
<td>1</td>
<td>2.000</td>
<td>2.206</td>
<td>2.021</td>
<td>2.014</td>
</tr>
<tr>
<td>2</td>
<td>1.977</td>
<td>1.980</td>
<td>1.949</td>
<td>1.975</td>
</tr>
<tr>
<td>3</td>
<td>1.955</td>
<td>1.943</td>
<td>1.962</td>
<td>1.963</td>
</tr>
<tr>
<td>4</td>
<td>1.932</td>
<td>1.934</td>
<td>1.919</td>
<td>1.947</td>
</tr>
<tr>
<td>5</td>
<td>1.909</td>
<td>1.914</td>
<td>1.911</td>
<td>1.916</td>
</tr>
<tr>
<td>6</td>
<td>1.886</td>
<td>1.908</td>
<td>1.881</td>
<td>1.894</td>
</tr>
<tr>
<td>7</td>
<td>1.864</td>
<td>1.870</td>
<td>1.854</td>
<td>1.869</td>
</tr>
<tr>
<td>8</td>
<td>1.841</td>
<td>1.842</td>
<td>1.844</td>
<td>1.843</td>
</tr>
<tr>
<td>9</td>
<td>1.818</td>
<td>1.801</td>
<td>1.824</td>
<td>1.825</td>
</tr>
<tr>
<td>10</td>
<td>1.795</td>
<td>1.791</td>
<td>1.785</td>
<td>1.807</td>
</tr>
<tr>
<td>11</td>
<td>1.773</td>
<td>1.760</td>
<td>1.775</td>
<td>1.774</td>
</tr>
<tr>
<td>12</td>
<td>1.750</td>
<td>1.752</td>
<td>1.742</td>
<td>1.751</td>
</tr>
<tr>
<td>13</td>
<td>1.727</td>
<td>1.724</td>
<td>1.718</td>
<td>1.730</td>
</tr>
<tr>
<td>14</td>
<td>1.705</td>
<td>1.704</td>
<td>1.686</td>
<td>1.699</td>
</tr>
<tr>
<td>15</td>
<td>1.685</td>
<td>1.679</td>
<td>1.684</td>
<td>1.692</td>
</tr>
<tr>
<td>16</td>
<td>1.654</td>
<td>1.658</td>
<td>1.650</td>
<td>1.659</td>
</tr>
<tr>
<td>17</td>
<td>1.636</td>
<td>1.634</td>
<td>1.616</td>
<td>1.637</td>
</tr>
</tbody>
</table>

viii. VECTOR GROUP MEASUREMENT YN(a)0d 11=
1Y-3Y=1Z-3Z=1Y-3Z-Z-3Y

<table>
<thead>
<tr>
<th>APPLIED VOLTAGE</th>
<th>MESURED ACROSS</th>
<th>MEASURED VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1X-1Y = 401</td>
<td>1X-3X</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>1Y-3Y</td>
<td>376</td>
</tr>
<tr>
<td>1Y-1Z = 426</td>
<td>1Z-Z</td>
<td>388</td>
</tr>
<tr>
<td></td>
<td>1Z-3Y</td>
<td>401</td>
</tr>
<tr>
<td></td>
<td>1X-N</td>
<td>228.5</td>
</tr>
<tr>
<td>1Z-1X = 424</td>
<td>1X-3Z</td>
<td>25.2</td>
</tr>
<tr>
<td></td>
<td>3Z-N</td>
<td>202</td>
</tr>
</tbody>
</table>

ix. SHORT CIRCUIT CURRENT (LV SHORT, 3X+3Y+3Z)

<table>
<thead>
<tr>
<th>Tap No.</th>
<th>APPLIED VOLTAGE IN PRIMARY(Volts)</th>
<th>MEASURED AMPS IN PRIMARY(Amp.)</th>
<th>MEASURED AMPS IN SECONDARY(Amp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>XY</td>
<td>YZ</td>
<td>ZX</td>
</tr>
<tr>
<td>9b</td>
<td>398.3</td>
<td>398.1</td>
<td>397.5</td>
</tr>
</tbody>
</table>

x. WINDING RESISTANCE IN HV SIDE IN (mΩ)

<table>
<thead>
<tr>
<th>TAP NO.</th>
<th>MEASURED RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1X-N</td>
<td>331.6</td>
</tr>
<tr>
<td>1Y-N</td>
<td>331.3</td>
</tr>
<tr>
<td>1Z-N</td>
<td>330.9</td>
</tr>
<tr>
<td>2X-N</td>
<td>324.4</td>
</tr>
<tr>
<td>2Y-N</td>
<td>324.5</td>
</tr>
<tr>
<td>2Z-N</td>
<td>318.4</td>
</tr>
<tr>
<td>3X-N</td>
<td>313.7</td>
</tr>
<tr>
<td>3Y-N</td>
<td>312.9</td>
</tr>
<tr>
<td>4X-N</td>
<td>308.0</td>
</tr>
<tr>
<td>4Y-N</td>
<td>307.4</td>
</tr>
<tr>
<td>5X-N</td>
<td>301.8</td>
</tr>
<tr>
<td>5Y-N</td>
<td>301.2</td>
</tr>
</tbody>
</table>

5
<table>
<thead>
<tr>
<th>Tap No.</th>
<th>2X-N</th>
<th>2Y -N</th>
<th>2Z-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>354.8</td>
<td>350.7</td>
<td>354.8</td>
</tr>
</tbody>
</table>

xii. WINDING RESISTANCE IN LV SIDE IN (mΩ)

<table>
<thead>
<tr>
<th>Tap No.</th>
<th>3X3Y</th>
<th>3Y3Z</th>
<th>3Z3X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>15.4</td>
<td>16.4</td>
<td>15.3</td>
</tr>
</tbody>
</table>

Tests carried out on 22.12.2015

<table>
<thead>
<tr>
<th>Dissolved Gas Results: (in ppm)</th>
<th>Key Gas Concentration Limits (As per IEEE Std C57.104-2008) (in ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Date</td>
<td>Present</td>
</tr>
<tr>
<td>Carbon Di-oxide CO</td>
<td>5774</td>
</tr>
<tr>
<td>Carbon Mono-oxide CO</td>
<td>274</td>
</tr>
<tr>
<td>Ethylene C₂H₄</td>
<td>7</td>
</tr>
<tr>
<td>Ethane C₂H₆</td>
<td>6</td>
</tr>
<tr>
<td>Methane CH₄</td>
<td>12</td>
</tr>
<tr>
<td>Acetylene C₂H₂</td>
<td>0.5</td>
</tr>
<tr>
<td>TDCG</td>
<td>309</td>
</tr>
</tbody>
</table>

Roger’s Ratio Indicates (for Present Simple only)

CH₄ / H₂	1.23
C₂H₂ / C₂H₄	0.09
C₂H₃ / C₂H₆	1.28
C₂H₆ / CH₄	0.48
CO₂ / CO	21.10

IEEE Std. C57.104-2008 (by comparing present and previous TDCG values) suggests:

Change in TDCG Value = 57 ppm Rate = 0.3 ppm/day
Tests carried out on 19.02.2016

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Insulation Tested</th>
<th>Make & SI No.</th>
<th>Yr. of Menu & Yr. of comm.</th>
<th>Mode</th>
<th>Voltage Applied (kV)</th>
<th>Capacitance (pF)</th>
<th>Dissipation Factor (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(HV - LV) - TV</td>
<td>--</td>
<td>--</td>
<td>UST-R</td>
<td>10</td>
<td>6471.60</td>
<td>0.20</td>
</tr>
<tr>
<td>2.</td>
<td>(HV – LV) – E</td>
<td>--</td>
<td>--</td>
<td>GSTg-RB</td>
<td>10</td>
<td>7851.56</td>
<td>0.22</td>
</tr>
<tr>
<td>3.</td>
<td>TV – E</td>
<td>--</td>
<td>--</td>
<td>GSTg-RB</td>
<td>10</td>
<td>15630.52</td>
<td>0.20</td>
</tr>
<tr>
<td>4.</td>
<td>400 kV R-Bushing</td>
<td>CGL-S70954</td>
<td>2009</td>
<td>UST-R</td>
<td>10</td>
<td>521.74</td>
<td>0.26</td>
</tr>
<tr>
<td>5.</td>
<td>400 kV Y-Bushing</td>
<td>CGL-S70972</td>
<td>2009</td>
<td>UST-R</td>
<td>10</td>
<td>529.93</td>
<td>0.28</td>
</tr>
<tr>
<td>6.</td>
<td>400 kV B-Bushing</td>
<td>CGL-S70969</td>
<td>2009</td>
<td>UST-R</td>
<td>10</td>
<td>548.14</td>
<td>0.29</td>
</tr>
<tr>
<td>7.</td>
<td>220 kV R-Bushing</td>
<td>CGLS2453002108</td>
<td>2009</td>
<td>UST-R</td>
<td>10</td>
<td>373.40</td>
<td>0.30</td>
</tr>
<tr>
<td>8.</td>
<td>220 kV Y-Bushing</td>
<td>CGLS2453002130</td>
<td>2009</td>
<td>UST-R</td>
<td>10</td>
<td>380.76</td>
<td>0.23</td>
</tr>
<tr>
<td>9.</td>
<td>220 kV B-Bushing</td>
<td>CGLS2453002124</td>
<td>2009</td>
<td>UST-R</td>
<td>10</td>
<td>374.71</td>
<td>0.22</td>
</tr>
<tr>
<td>10.</td>
<td>33 kV R-Bushing</td>
<td>CGL-52100553</td>
<td>2009</td>
<td>UST-R</td>
<td>10</td>
<td>198.06</td>
<td>0.26</td>
</tr>
<tr>
<td>11.</td>
<td>33 kV Y-Bushing</td>
<td>CGL-52100600</td>
<td>2009</td>
<td>UST-R</td>
<td>10</td>
<td>203.47</td>
<td>0.27</td>
</tr>
<tr>
<td>12.</td>
<td>33 kV B-Bushing</td>
<td>CGL-52100604</td>
<td>2009</td>
<td>UST-R</td>
<td>10</td>
<td>204.12</td>
<td>0.27</td>
</tr>
<tr>
<td>13.</td>
<td>220 kV I/C R-CT</td>
<td>BHEL-2448925</td>
<td>2005</td>
<td>UST-R</td>
<td>10</td>
<td>783.21</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Details of previous failure

N. Details of previous failure : Nil

Sequence of events/Description of failure

O. Sequence of events/Description of failure:

i. On 08.03.16, at 1201 hrs., EMCO make 315 MVA auto transformer (ICT-4) tripped with heavy jerk and sound with following facia/relay indications and caught fire:

 a. Differential protection 87 T1
 b. Differential 3-ph trip
 c. Differential R-ph trip
 d. Differential Y-ph trip
 e. Differential B-ph trip
 f. WTI/PRV trip
 g. Overcurrent and earth fault Protection
 h. 64 T2 REF protection
 i. REF trip
 j. Buchholz trip
 k. OLTC Buchholz Y-ph trip

ii. After hearing the sound, staff present at substation rushed to the switchyard and found 220 kV bushing of Y & B-phase of ICT-4 under fire. Nitrogen Injection Fire Protection System and High Velocity Water Spray System operated but fire could not be controlled. Fire tenders from nearby Bawana Power Plant of PPCL rushed to the site and quenched the fire.

Details of Tests done after failure

P. Details of Tests done after failure : The bushings were dislocated from its original position and damage to the transformer due to fire was so severe that it was not possible to carry out any test on failed transformer.

Observations

Q. Observations :
i. Prior to fault, load on transformer was 121 MW. The transformer was operating on normal tap 9B at the time of failure. OLTC had not been operated since commissioning.

ii. During physical inspection of the failed transformer at site, it was observed that MV Bushings of Y & B-phase had completely damaged due to fire, burnt insulation paper and connecting rods of bushings were visible, ceramic housing was found scattered around transformer and flanges had damaged.

iii. MV bushing of R-phase and tertiary bushings were also found damaged. Since the direction of wind was away from HV bushings, not much damage to HV bushings was observed, however some petticoats of bushings had chipped.

iv. Transformer tank was found bulged at MV side and it had cracked at a number of places.

v. 220 kV Surge Arresters had completely damaged due to heat, surge counters had melted and ZnO blocks & pieces of arrester housing were scattered on the ground.

vi. 220 kV Bus Post Insulators, aluminium pipes, and disc insulators of jack bus on MV side were also burnt due to fire.

vii. One of the tertiary bushings was removed in front of the CEA team and tank was inspected through that opening. No visible damage to tertiary terminals was observed.

viii. Tertiary of transformer is unloaded. All three terminals of tertiary winding have been brought outside the tank and terminals were not insulated.

ix. The event logger data indicates that the fault current level was 44.827 kA. 400 kV side main breaker and tie breaker had opened within 53 ms and 57 ms respectively of operation of differential relay.

x. The event logger data also indicates operation of Differential relay and PRV/Buchholz which might have led to operation of Nitrogen Injection Fire Protection System.

xi. It was informed by DTL representative that High Velocity Water Spray (HVWS) System had operated, however, it could not quench the fire of bushings. It appears that water mist from water spray system could not provide sufficient cooling effect around transformer tank & bushings due to wind and thus HVWS system was not able to extinguish fire.

xii. It was informed by DTL that surge counter of 220 kV R-phase surge arrester was not functional and it was bypassed through a cable.

xiii. Common earthing pit was provided for all three SAs (R, Y&B phases) on 220 kV side. Earthing electrode was not visible in any of the earth pits for transformer neutral and SAs on 400 kV & 220 kV side.
xv. It was observed that the high resistive gravels spread over the earthmat in the switchyard area was covered with grasses in many areas of the switchyard defeating the very purpose of spreading of gravels.

R. Probable cause of failure:

Operation of Differential relay along with operation of Buchholz, OSR (OLTC Buchholz) & PRV relays indicates fault inside the transformer. Operation of REF indicates that fault involves ground. The flow of heavy fault current in windings might have led to rise in winding temperature and operation of WTI Trip.

High energy arcing due to fault inside the transformer tank might have led to sudden pressure rise in tank and tripping of Buchholz & PRV. PRV being a slow operating device might not have been able to bring down the gas pressure inside the tank to safe value and high rate of rise of gas pressure might have resulted in cracks at weak areas of the transformer tank.

It was informed by DTL staff that at first fire was noticed on Y-phase MV bushing only and later on it spread to other accessories and equipment. It is possible that damage to insulation of Y-phase MV winding might have taken place. This is also supported by event logger data showing 44 kA fault current in Y-phase.

Buchholz relay (OSR) of OLTC of Y & B-phase had operated indicating oil surge in respective OLTCs which might be due to fault in regulating (tap) windings.

3. Failure of 100 MVA, 220/66-33/11 kV Power Transformer at 220kV Pappankalan-I Substation of Delhi Transco Ltd.(DTL)

A. Name of Substation : 220kV Pappankalan-I Substation
B. Utility/Owner of substation : DTL
C. Faulty Equipment : Power transformer
D. Rating : 100 MVA, 220/66-33/11 kV
E. Make : EMCO
F. Sr. No. : HT/1644/12460
G. Year of manufacturing : 2006
H. Year of commissioning : 2006 (30.04.06)
I. Date and time of occurrence/discovery of fault : 04.09.16 at 0635 hrs
J. Information received in CEA : 07.09.16

K. Fault discovered during : Operation

L. Present condition of equipment : EMCO recommended to send the failed transformer to their works for further assessment. The transformer is to be repaired by OEM.

M. Details of previous maintenance

N. Details of previous failure : No previous failures

O. Sequence of events/Description of failure : On 04.09.16 at 0635 hrs, the transformer tripped on differential relay, Buchholz relay, PRD and SPRV. On inspection it was found that flange plates of all three phases of HV and MV windings were cracked and oil was leaking. There was no visible sign of bulging of the tank or cracks on the tank.
 i. Y-ph HV winding was found damaged. Disc had collapsed.
 ii. Burnt insulating material was found inside the tank.
 iii. All bushing connections were intact.
 iv. OLTC leads were OK.
 v. All HV, LV and tertiary bushings were found damaged.

P. Details of Tests done after failure : Following tests were conducted by DTL on the transformer post failure:
 - Magnetic balance
 - Magnetizing current
 - Tan δ test of HV, MV and LV windings
 - Sweep Frequency Response Analysis (SFRA)
 - DGA (test results given below)
 - Voltage Ratio
 - Insulation Resistance
 - Winding resistance
Dissolve Gas Results (in ppm)

<table>
<thead>
<tr>
<th></th>
<th>present</th>
<th>1st Prior</th>
<th>Key Gas Concentration Limits (As per IEEE Std. C57.104-2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Date</td>
<td>04.09.16</td>
<td>01.09.16</td>
<td>(in ppm)</td>
</tr>
<tr>
<td>Hydrogen H₂</td>
<td>544</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>Carbon Di-oxide CO₂</td>
<td>16459</td>
<td>15812</td>
<td>2500</td>
</tr>
<tr>
<td>Carbon Mono-oxide CO</td>
<td>1613</td>
<td>1442</td>
<td>350</td>
</tr>
<tr>
<td>Ethylene C₂H₄</td>
<td>470</td>
<td>26</td>
<td>350</td>
</tr>
<tr>
<td>Ethane C₂H₆</td>
<td>49</td>
<td>37</td>
<td>65</td>
</tr>
<tr>
<td>Methane CH₂</td>
<td>280</td>
<td>43</td>
<td>120</td>
</tr>
<tr>
<td>Acetylene C₂H₂</td>
<td>385.7</td>
<td><0.5</td>
<td>1</td>
</tr>
<tr>
<td>TDCG</td>
<td>3343</td>
<td>1562</td>
<td>720</td>
</tr>
</tbody>
</table>

Rogers’ Ratio Indicates (for present BOTTOM sample only)

- CH₄/H₂ = 0.52
- C₂H₂/ C₂H₆ = 0.82
- C₂H₆/ C₂H₄ = 9.64
- C₂H₄/ CH₄ = 0.17
- CO₂/CO = 10.20

IEEE Std. C57.104-2008 (by comparing present and previous TDCG values) suggests:

- Change in TDCG Value = 1781 ppm
- Rate = 593.63 ppm/day

Q. Probable cause of failure:

DGA of oil indicates high concentration of Hydrogen (H₂-544ppm), Carbon dioxide (CO₂- 16459 ppm), Carbon monoxide (CO- 1613 ppm), Ethylene (C₂H₄- 470 ppm), Methane (CH₄-280 ppm) and Acetylene (C₂H₂-385.7). TDCG was 3343 ppm which is higher than normal value. The high concentration of acetylene gas could be due to arcing inside the tank. Values of Roger’s ratio (CH₄/ H₂= 0.52 and C₂H₂/ C₂H₄= 0.82) also suggest high energy discharge. Due to the generation of these gases, high pressure might have built up, which might have led to the cracking of the flanges of the bushings.

A fault current of 2959 Amp passed through Y- ph HV side winding, which might be due to inter-turn fault in Y- ph HV winding.

Operation of Differential, Buchholz, PRD & SPRV relays indicates internal fault of the transformer. The internal winding insulation failure might have led to inter turn winding short circuit.

As the transformer did not catch fire, it can be assumed that the temperature did not cross the flashover point of oil. It is also supported by the fact that OTI/WTI alarms did not operate.
4. Failure of 100 MVA, 220/66-33/11 kV Power Transformer-2 at 220kV Parkstreet Substation of Delhi Transco Ltd. (DTL)

A. Name of Substation : 220kV Parkstreet Substation
B. Utility/Owner of substation : DTL
C. Faulty Equipment : Power transformer
D. Rating : 100 MVA, 220/66-33/11 kV
E. Make : BHEL
F. Sr. No. : 2007616
G. Year of manufacturing : 1993
H. Year of commissioning : 1994 (31.01.94)
I. Date and time of occurrence/discovery of fault : 11.09.16 at 1047 hrs
J. Information received in : 23.09.2016
K. Fault discovered during : Operation
L. Present condition of equipment : OEM stated that the failed transformer could not be repaired on site and was declared faulty.
M. Details of previous maintenance : Capacitance & tan delta tests were conducted on 26.06.2015 and 18.06.2016 and from test results given below, it was observed that capacitance for 33 kV Y phase bushing and 220 kV B phase bushing had changed -6.84% and 12.07% respectively, which were higher than normal variation.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Insulation Tested</th>
<th>Mode</th>
<th>Current Results dt. 12.09.16</th>
<th>Current Results 18.06.16</th>
<th>Previous Results dt. 26.06.15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cap. Dissipation Factor %</td>
<td>Cap. Dissipation Factor %</td>
<td>Cap. Dissipation Factor %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(pF) Meas. @20°C</td>
<td>(pF) Meas. @20°C</td>
<td>(pF) Meas. @20°C</td>
</tr>
<tr>
<td>1.</td>
<td>HV - LV</td>
<td>UST-R</td>
<td>28533.29 0.55 0.47</td>
<td>28578.20 0.57 0.36</td>
<td>28473.27 0.57 0.47</td>
</tr>
<tr>
<td>2.</td>
<td>HV - E</td>
<td>GSTg-RB</td>
<td>5485.85 0.32 0.31</td>
<td>5495.27 0.39 0.20</td>
<td>5473.14 0.37 0.32</td>
</tr>
<tr>
<td>3.</td>
<td>LV-T</td>
<td>UST-R</td>
<td>1197.38 0.32 0.27</td>
<td>1195.48 0.35 0.20</td>
<td>1195.56 0.32 0.29</td>
</tr>
<tr>
<td>4.</td>
<td>LV-E</td>
<td>GSTg-RB</td>
<td>3624.65 0.43 0.63</td>
<td>3623.64 0.55 0.28</td>
<td>3580.64 0.76 0.45</td>
</tr>
</tbody>
</table>
N. Details of previous failure : No previous failure

O. Sequence of events/ Description of failure

The subject transformer tripped on 11.09.2016 at 10:47 hrs on following indications:
1. Buchholz (Trip)
2. Differential (87 Ta & Tc)

Load on transformer at 10:00 hrs was 36 MW. The transformer was charged at 12:55 hrs but was switched off at 20:42 hrs due to high winding temperature. During physical inspection of the failed transformer at site, no visible damage to bushing and transformer tank was observed; there was no leakage of oil from the transformer and no damage to nearby equipment of the substation.

Tertiary of transformer was unloaded. All three terminals of tertiary winding have been brought outside and are insulated.

Maximum loading on transformer was 79 MW on 08.09.2016. The transformer was operating on tap 4 at the time of failure. It was a normal day with clear sky.

P. Details of Tests done after failure

Following tests were carried out by DTL on the failed transformer.
1. Winding resistance
2. Magnetizing balance
3. Magnetizing current (test results given below)
4. IR value
5. Tan Delta
6. Sweep Frequency Response Analysis (SFRA)
1. **Magnetizing Current** measurement

<table>
<thead>
<tr>
<th>HV Side (1 Ph Supply)</th>
<th>Voltage Balance Test (TAP – 4)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetizing Current Test</td>
<td>V_{RN}</td>
<td>V_{YN}</td>
</tr>
<tr>
<td>I_{RN}</td>
<td>9.1 m A</td>
<td>234</td>
</tr>
<tr>
<td>I_{YN}</td>
<td>5.4 m A</td>
<td>96.7</td>
</tr>
<tr>
<td>I_{BN}</td>
<td>6.8 m A</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MV Side (1 Ph Supply)</th>
<th>Voltage Balance Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetizing Current Test</td>
<td>V_{RN}</td>
<td>V_{YN}</td>
</tr>
<tr>
<td>I_{RN}</td>
<td>310 m A</td>
<td>232.6</td>
</tr>
<tr>
<td>I_{YN}</td>
<td>160 m A</td>
<td>101.7</td>
</tr>
<tr>
<td>I_{BN}</td>
<td>190 m A</td>
<td>20.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LV Side (1 Ph Supply)</th>
<th>Voltage Balance Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetizing Current Test</td>
<td>V_{RN}</td>
<td>V_{YN}</td>
</tr>
<tr>
<td>I_{RN}</td>
<td>390 m A</td>
<td>233.8</td>
</tr>
<tr>
<td>I_{YN}</td>
<td>460 m A</td>
<td>218.7</td>
</tr>
<tr>
<td>I_{BN}</td>
<td>910 m A</td>
<td>213.3</td>
</tr>
</tbody>
</table>

2. **DGA** results
Dissolve Gas Results: (in ppm)

<table>
<thead>
<tr>
<th></th>
<th>present</th>
<th>1st Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Date</td>
<td>12.09.16</td>
<td>19.07.16</td>
</tr>
<tr>
<td>Hydrogen H₂</td>
<td>288</td>
<td>9</td>
</tr>
<tr>
<td>Carbon Di-oxide CO₂</td>
<td>3300</td>
<td>1788</td>
</tr>
<tr>
<td>Carbon Mono-oxide CO</td>
<td>687</td>
<td>228</td>
</tr>
<tr>
<td>Ethylene C₂H₂</td>
<td>332</td>
<td>12</td>
</tr>
<tr>
<td>Ethane C₂H₆</td>
<td>105</td>
<td>79</td>
</tr>
<tr>
<td>Methane CH₂</td>
<td>234</td>
<td>74</td>
</tr>
<tr>
<td>Acetylene C₂H₂</td>
<td>92.8</td>
<td><0.5</td>
</tr>
<tr>
<td>TDCG</td>
<td>1739</td>
<td>403</td>
</tr>
</tbody>
</table>

Rogers’ Ratio Indicates (for present BOTTOM sample only)

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄/H₂</td>
<td>0.81</td>
</tr>
<tr>
<td>C₂H₆/ C₂H₄</td>
<td>0.28</td>
</tr>
<tr>
<td>C₂H₆/ C₂H₄</td>
<td>3.15</td>
</tr>
<tr>
<td>C₂H₆/ CH₄</td>
<td>0.45</td>
</tr>
<tr>
<td>CO₂/CO</td>
<td>4.80</td>
</tr>
</tbody>
</table>

IEEE Std. C57.104-2008 (by comparing present and previous TDCG values) suggests:
Change in TDCG Value = 1781 ppm
Rate = 25.2 ppm/day

* Sampling Interval:

Q. Probable cause of failure:

The DGA, magnetizing current measurement and SFRA tests show abnormality as per OEM’s (i.e. BHEL) report and there was abnormal temperature rise (20°C).

From the measurements of magnetizing currents, it is observed that magnetizing current in R phase HV and MV winding is much higher than in other two phases, which indicates that there might be inter turn fault in R phase winding; the same may also be corroborated through magnetic balance test.

Operation of Differential and Buchholz relays indicates internal fault of the transformer. It is assumed that inter-turn winding insulation failure caused flow of heavy current which triggered operation of differential relay. In the absence of Disturbance Recorder data, it is difficult to ascertain the amount of current flown through various phases during fault. Fault current might have caused arcing inside the transformer leading to generation of gases and subsequent operation of Buchholz relay.

DGA of oil sample collected after failure indicated high generation of H₂ (288 ppm), CO₂ (3300 ppm), CO (687 ppm), C₂H₄ (332 ppm), C₂H₆ (105 ppm), CH₄ (234 ppm)
& C₂H₂ (92.8 ppm). Total Dissolved Combustible Gases were found to be 1739 ppm, much higher than acceptable value of 720 ppm as per IEEE C57.104-2008 Standard. It was found that Roger’s ratio for CH₄/H₂, C₂H₂/C₂H₄ & C₂H₄/C₂H₆ were 0.81, 0.28 & 3.15 respectively which indicates high energy discharge. The abnormal rise in acetylene content supported by high temperature rise indicates high energy fault. Post fault SFRA report shows deviation from previous SFRA report, especially at lower frequencies (<1 kHz), which also supports inter turn fault proposition.

5. Failure of 315 MVA, 400/220/33 kV ICT-I at 400 kV Bawana substation of DTL.

A. Name of Substation : 400 kV Bawana Substation
B. Utility/Owner of substation : DTL
C. Faulty Equipment : ICT-I
D. Rating : 400/220/33 kV
E. Make : BHEL
F. Sr. No. : 6005263
G. Year of manufacturing : 1994
H. Year of commissioning : 2000 (09th June)
I. Date and time of occurrence/discovery of fault : 11.12.2016 at 0837 hrs
K. Fault discovered during : Operation
L. Present condition of equipment : Damaged
M. Details of previous maintenance : Following tests were conducted on 17.02.16:

1. Capacitance & Tan delta tests

<table>
<thead>
<tr>
<th>Insulation Tested</th>
<th>Make & Sl. No.</th>
<th>Mode</th>
<th>kV</th>
<th>Cap. (pF)</th>
<th>Dissipation Factor (%)</th>
</tr>
</thead>
</table>

17
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Yr. of Mfg. & Yr. of Comm.</th>
<th>Measured @ 20°C</th>
<th>Corrected @ 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(HV+LV) - TV</td>
<td>10</td>
<td>4947.29</td>
</tr>
<tr>
<td>2.</td>
<td>(HV+LV) - E</td>
<td>10</td>
<td>7651.12</td>
</tr>
<tr>
<td>3.</td>
<td>TV - E</td>
<td>10</td>
<td>18165.26</td>
</tr>
<tr>
<td>4.</td>
<td>400kV R-ф Bushing</td>
<td>1993/2000</td>
<td>470.37</td>
</tr>
<tr>
<td>5.</td>
<td>400kV Y-ф Bushing</td>
<td>2007/2008</td>
<td>395.49</td>
</tr>
<tr>
<td>6.</td>
<td>400kV B-ф Bushing</td>
<td>2007/2008</td>
<td>403.72</td>
</tr>
<tr>
<td>7.</td>
<td>220kV R-ф Bushing</td>
<td>2007/2008</td>
<td>323.52</td>
</tr>
<tr>
<td>8.</td>
<td>220kV Y-ф Bushing</td>
<td>2008/2008</td>
<td>307.50</td>
</tr>
<tr>
<td>9.</td>
<td>220kV B-ф Bushing</td>
<td>2008/2008</td>
<td>311.15</td>
</tr>
<tr>
<td>10.</td>
<td>33 kV R-ф Bushing</td>
<td>2007/2008</td>
<td>336.14</td>
</tr>
<tr>
<td>11.</td>
<td>33 kV Y-ф Bushing</td>
<td>2007/2008</td>
<td>337.35</td>
</tr>
<tr>
<td>12.</td>
<td>33 kV B-ф Bushing</td>
<td>2007/2008</td>
<td>334.04</td>
</tr>
<tr>
<td>13.</td>
<td>220kV I/C R-ф CT</td>
<td>1994</td>
<td>840.04</td>
</tr>
<tr>
<td>14.</td>
<td>220kV I/C Y-ф CT</td>
<td>1994</td>
<td>834.98</td>
</tr>
<tr>
<td>15.</td>
<td>220kV I/C B-ф CT</td>
<td>1994</td>
<td>797.34</td>
</tr>
</tbody>
</table>

2. Magnetizing Current & Magnetizing Balance Test

Voltage Applied: 230 V, 1- Θ, 50 Hz

HV Side:

<table>
<thead>
<tr>
<th>Tap Position</th>
<th>Voltage Applied (Volts)</th>
<th>Voltage Induced (Volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>(V_{RN}) 237</td>
<td>(V_{YN}) 225, (V_{BN}) 23</td>
</tr>
<tr>
<td></td>
<td>(V_{YN}) 237.4</td>
<td>(V_{RN}) 120.6, (V_{BN}) 194.1</td>
</tr>
<tr>
<td></td>
<td>(V_{BN}) 237.6</td>
<td>(V_{RN}) 21.6, (V_{YN}) 224.1</td>
</tr>
</tbody>
</table>

MV Side:

<table>
<thead>
<tr>
<th>Tap Position</th>
<th>Voltage Applied (Volts)</th>
<th>Voltage Induced (Volts)</th>
</tr>
</thead>
</table>
Normal

Normal	V_{RN}	236.1	V_{YN}	219.6	V_{BN}	24.26
Normal	V_{RY}	237.6	V_{YB}	119.4	V_{BR}	47.4
Normal	V_{YB}	236.3	V_{RY}	182.1	V_{BR}	107.3
Normal	V_{BR}	231.4	V_{RY}	180.1	V_{YB}	108.1

LV Side:

Tap Position	Voltage Applied (Volts)	Voltage Induced (Volts)		
LV Side:				
Tap Position	Voltage Applied (Volts)	Voltage Induced (Volts)		
Normal	V_{RN}	126.4	V_{YN}	109.1
Normal	V_{YN}	219.6	V_{BN}	213.6

3. Voltage Ratio Tests

Temp. HV Wdg.	MV Wdg.	LV Wdg.				
Voltage Applied: 415V, 3Ø, 50-Hz						
Tap	HV Side Applied Voltage (Volts)	MV Side Induced Voltage (Volts)	LV Side Induced Voltage (Volts)			
9b	V_{RN}	237	V_{YN}	236.1	V_{BN}	106.3
9b	V_{YN}	236	V_{BN}	236.1	V_{RN}	106.3
9b	V_{BN}	231.4	V_{YN}	236.1	V_{RN}	106.3

4. IR measurement of winding of transformer

Configuration	HV - E	1.5 GΩ	205 GΩ	4.02 GΩ	1.97
Configuration	HV - LV	1.72 GΩ	2.50 GΩ	8.03 GΩ	3.2
Configuration	MV - E	1.64 GΩ	2.11 GΩ	4.20 GΩ	1.99
Configuration	LV - E	1.6 GΩ	1.9 GΩ	3.93 GΩ	2.02

5. Winding Resistance measurement

Tap	HV Side Resistance(mΩ)	MV Side Resistance (mΩ)	LV Side Resistance(mΩ)						
Tap	R_{HN}	R_{YN}	R_{BN}	R_{RN}	R_{YN}	R_{BN}	R_{RY}	R_{YB}	R_{BR}
9	608	606	602	345	346	346	27	29	26

DGA history:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 19.10.13 | 14 | 8749 | 716 | 16 | 7 | 10 | 0.5 | 764 |
N. Details of previous failure: In 2008, R phase HV bushing had blasted. The transformer was recommissioned after repairing.

O. Sequence of events/ Description of failure:
On 11.12.2016 at 08:37 hrs, 315 MVA, 400/220/33 kV ICT-I tripped with heavy sound and caught fire. 220 kV Rohini-I Ckt-II had tripped on Y-phase zone -I earth fault. Atmosphere was foggy at the time of fault. Details of all tripping and relay’s operations/indications are given below.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Equipment</th>
<th>Relays</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rohini-I Circuit-II, CB No. 1552</td>
<td>Zone-1, Y Phase tripped, Earth Fault Relay Operated: 186 A & B, 195 A & B, 295 B Fault Duration: 49 ms. Fault Location: -1.17 KM (I_a = 634.6) A (I_b = 20.84) kA, (I_c = 286.9) A.</td>
</tr>
</tbody>
</table>
3. 315 MVA, BHEL Make, ICT- III
 Facia: CB TC-I & II Faulty
 Group 1 & 2 Tripped Relay Circuit Faulty
 Relay: Tripped Circuit supervision, TC-I
 195 & 295 and 86 B
 167(Over Current B Phase)
 197 (Fuse Fail)
 86 B I Group, 75D CVT Switching, 95B-1,
 Supervision Trip Relay
 CT Switching 752 X
 Incomer Relay:
 Facia: CB Auto Tripped
 Relay: 195 CB, Trip Circuit Supervision, TC-IB

4. 315 MVA, BHEL make ICT-IV
 (Main CB- 422-52)
 86A & B operated
 Buchholz Alarm
 Relay on 220 kV Incomer-IV
 86.1 & 86.2 Relay Operated

5. 220 kV Incomer No. V
 86 A & B Operated
 LBB port. Relay 50Z, LBB Trip.

P. Details of Tests done after failure:
 Not applicable, as there was extensive damage to the
 windings, core and main tank due to fire.

Q. Observations:
 - All HV, LV & TV bushings and all 400 kV LAs
 were damaged along with their display
 counters.
 - Main tank was bulged and burst opened from
 HV side’s top welded joint.
 - 3 phase OLTC was damaged.
 - Heavy carbonization had accumulated inside
 the tank of ICT-I due to burning of windings.
 - Marshalling box and associated cables were
 burnt.
 - Oil flow indicators were damaged.
 - LV side B phase LA was also damaged.
 - Heating marks observed on radiator bank.
 - As per M/s BHEL opinion, transformer is
 beyond repair.

R. Probable cause of failure:
 It is clear from relay indication that Rohini-1 ckt-II
 tripped due to phase to earth fault in Y-phase with a
 fault current of 27 kA (as registered in DR). Upon
 inspection it was found that Y-phase insulator string
 on one of the towers had damaged and conductor
 touched the tower leading to phase to earth fault. It
appears that flow of such high current through windings of ICT-I damaged its insulation and caused fault inside the transformer resulting into operation of differential and overcurrent relay. Fault current recorded in DR was 47.85 kA. Due to high current the temperature of the oil & winding and pressure inside the tank increased causing operation of OTI, WTI, PRV, & Buchholz.

6. Failure of 100 MVA, 220/33/11 kV Power Transformer at Geeta Colony substation of DTL

A. Name of Substation : 220 kV Geeta Colony Substation

B. Utility/Owner of substation : DTL

C. Faulty Equipment : Power Transformer

D. Rating : 100 MVA, 220/33/11 kV

E. Make : BHEL

F. Sr. No. : 2015820

G. Year of manufacturing : 2004

H. Year of commissioning : 2005

I. Date and time of occurrence/discovery of fault : 01.12.2016 @ 08:38 hrs.

J. Information received in CEA : 02.12.2016

K. Fault discovered during : Operation

L. Present condition of equipment : Faulty

M. Details of previous maintenance : Details of last periodic maintenance are as follows:

1. Insulation Resistance (Meggar) (conducted on 20.10.2016): -
 Applied Voltage :- 1 kV, DC

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Core To Yoke</th>
<th>Core To Tank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At 15 sec.</td>
<td>At 60 sec.</td>
</tr>
<tr>
<td>1</td>
<td>730 MΩ</td>
<td>971 MΩ</td>
</tr>
</tbody>
</table>
2. **Winding Resistance measurement** (conducted on 19.03.2016):
 Current applied: 10 A, DC

<table>
<thead>
<tr>
<th>Tap</th>
<th>HV side Resistance (mΩ)</th>
<th>LV side Resistance (mΩ)</th>
<th>TV side Resistance (mΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_{RN}</td>
<td>R_{YN}</td>
<td>R_{BN}</td>
</tr>
<tr>
<td>5</td>
<td>450</td>
<td>450.5</td>
<td>455.7</td>
</tr>
</tbody>
</table>

3. **Voltage Ratio** (conducted on 19.03.2016):
 Voltage applied: 415 V, 3 phase, 50 Hz

<table>
<thead>
<tr>
<th>Tap</th>
<th>HV side applied voltage (V)</th>
<th>LV side induced voltage (V)</th>
<th>TV side induced voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_{RN}</td>
<td>R_{YN}</td>
<td>R_{BN}</td>
</tr>
<tr>
<td>5</td>
<td>236.2</td>
<td>235.8</td>
<td>235.5</td>
</tr>
</tbody>
</table>

4. **Magnetizing Current** (conducted on 19.03.2016):

<table>
<thead>
<tr>
<th>Tap</th>
<th>HV</th>
<th>LV</th>
<th>TV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R-</td>
<td>Y-</td>
<td>B-</td>
</tr>
<tr>
<td>5</td>
<td>1.9</td>
<td>1.6</td>
<td>1.7</td>
</tr>
</tbody>
</table>

5. **Magnetic Balance** (conducted on 19.03.2016):

<table>
<thead>
<tr>
<th>S.No</th>
<th>Tap</th>
<th>Voltage (volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HV</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>V_{RN} 235.0</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>V_{RN} 126.2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>V_{RN} 23.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LV</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>V_{RN} 235.3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>V_{RN} 119.2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>V_{RN} 38.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TV</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>V_{RY} 235.0</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>V_{RY} 196.5</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>V_{RY} 197.5</td>
</tr>
</tbody>
</table>

6. **Capacitance and tan delta** (conducted on 19.03.2016):

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Insulation Tested</th>
<th>Make & Sl. No.</th>
<th>Yr. of Manuf & Yr. of comm.</th>
<th>Mode</th>
<th>KV applied</th>
<th>Capacitance (pF)</th>
<th>Dissipation Factor(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Measured Corrected @20°C</td>
</tr>
<tr>
<td>1</td>
<td>HV-LV</td>
<td>--</td>
<td>--</td>
<td>UST-R</td>
<td>10</td>
<td>20511.41</td>
<td>1.15 0.95</td>
</tr>
<tr>
<td>2</td>
<td>HV-E</td>
<td>--</td>
<td>--</td>
<td>GST-8-RB</td>
<td>10</td>
<td>5345.45</td>
<td>0.61 0.51</td>
</tr>
<tr>
<td>3</td>
<td>LV-T</td>
<td>--</td>
<td>--</td>
<td>UST-R</td>
<td>10</td>
<td>890.25</td>
<td>0.63 0.52</td>
</tr>
</tbody>
</table>
7. Measurement of earth resistance of transformer neutral & tank (Winter) conducted on 22.01.2016:

<table>
<thead>
<tr>
<th>S.No</th>
<th>Activity</th>
<th>Previous result</th>
<th>Current result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tank</td>
<td>0.49 Ω</td>
<td>0.11 Ω</td>
</tr>
<tr>
<td>2.</td>
<td>Neutral</td>
<td>0.49 Ω</td>
<td>0.11 Ω</td>
</tr>
</tbody>
</table>

8. DGA: DGA of oil was conducted on 22.11.16 and values of acetylene, CO2 & CO were found to be higher than permissible limits. DTL informed M/s BHEL in this regard on 24.11.16 and requested to inspect the transformer. Before BHEL could schedule a visit, transformer failed. Values of DGA are provided under item 'P'.

N. Details of previous failure : MV side bushings have been changed previously due to high value of capacitance and tan delta. Gas formation has been observed on many occasions which reflected in DGA reports. Transformer has had trouble since commissioning.

O. Sequence of events/Description of failure : On 01.12.2016 at 08:38 hrs, the transformer tripped on Differential, REF, PRV, Buchholz & Sudden Pressure Relay. Transformer oil spilled around transformer. BHEL recommended to send the transformer to BHEL works for further inspection and analysis.

P. Details of Tests done after failure : Post failure tests were conducted on 01.12.2016 and results are as follows:
1. **DGA:**

<table>
<thead>
<tr>
<th>Key Gas Concentration Limits (As per IEEE Std. C57.104-2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
</tr>
<tr>
<td>Test date</td>
</tr>
<tr>
<td>H₂</td>
</tr>
<tr>
<td>CO₂</td>
</tr>
<tr>
<td>CO</td>
</tr>
<tr>
<td>C₂H₄</td>
</tr>
<tr>
<td>C₂H₆</td>
</tr>
<tr>
<td>CH₄</td>
</tr>
<tr>
<td>C₂H₂</td>
</tr>
<tr>
<td>TDCG</td>
</tr>
</tbody>
</table>

Rogers’ Ratio Indicates (for test conducted on 01.12.2016)
- CH₄/H₂: 0.19
- C₂H₂/C₂H₄: 1.25
- C₂H₂/C₂H₆: 13.93
- C₂H₆/CH₄: 0.17
- CO₂/CO: 11.88

Change in TDCG value = 2072 ppm
Rate = 259 ppm/day

2. **Magnetizing current:**

In mA

<table>
<thead>
<tr>
<th>Tap</th>
<th>HV</th>
<th>LV</th>
<th>TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Y</td>
<td>B</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>590</td>
<td>2.8</td>
<td>3.8</td>
</tr>
</tbody>
</table>

3. **Magnetizing Balance:**

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Tap</th>
<th>Voltage (Volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HV</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>V₉₉ 233.1 V₉₉ 208.3 V₉₉ 22.6</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>V₉₉ 0 V₉₉ 237.7 V₉₉ 236.9</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>V₉₉ 0 V₉₉ 237.7 V₉₉ 238.9</td>
</tr>
<tr>
<td></td>
<td>LV</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>V₉₉ 218.8 V₉₉ 179.6 V₉₉ 34.7</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>V₉₉ 0 V₉₉ 233.1 V₉₉ 232.7</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>V₉₉ 0 V₉₉ 233 V₉₉ 233.0</td>
</tr>
<tr>
<td></td>
<td>TV</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>V₉₉ 234.8 V₉₉ 234.8 V₉₉ 0</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>V₉₉ 235 V₉₉ 235.6 V₉₉ 0</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>V₉₉ 155.3 V₉₉ 36.9 V₉₉ 191.3</td>
</tr>
</tbody>
</table>
4. **Voltage Ratio**:

In volts

<table>
<thead>
<tr>
<th>Tap</th>
<th>HV</th>
<th>LV</th>
<th>TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>V_{RN}</td>
<td>233.3</td>
<td>V_{RN}</td>
</tr>
<tr>
<td>5</td>
<td>V_{YN}</td>
<td>233.8</td>
<td>V_{YN}</td>
</tr>
<tr>
<td>5</td>
<td>V_{BN}</td>
<td>233.5</td>
<td>V_{BN}</td>
</tr>
</tbody>
</table>

5. **Insulation Resistance**:
Voltage applied: 5 kV

In GΩ

<table>
<thead>
<tr>
<th>Configuration</th>
<th>At 15 sec.</th>
<th>At 60 sec.</th>
<th>At 600 sec.</th>
<th>PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV-E</td>
<td>0.864</td>
<td>1.30</td>
<td>1.49</td>
<td>1.15</td>
</tr>
<tr>
<td>HV-MV</td>
<td>0.858</td>
<td>0.850</td>
<td>0.836</td>
<td>0.98</td>
</tr>
<tr>
<td>HV-LV</td>
<td>2.25</td>
<td>3.35</td>
<td>4.66</td>
<td>1.31</td>
</tr>
<tr>
<td>MV-LV</td>
<td>2.78</td>
<td>4.56</td>
<td>5.67</td>
<td>1.25</td>
</tr>
<tr>
<td>MV-E</td>
<td>0.913</td>
<td>1.28</td>
<td>1.37</td>
<td>1.07</td>
</tr>
<tr>
<td>LV-E</td>
<td>1.79</td>
<td>2.86</td>
<td>3.98</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Q. **Observations**

Internal inspection by BHEL and DTL engineers showed no visible damage. All bushings and their leads were found intact. Inspection by CEA officers was also carried out wherein no external damage was observed; however, there was oil spill around the transformer tank.

R. **Probable cause of failure**

DGA conducted on 22.11.2016 showed acetylene quantity higher than permissible limits. It appears that some arcing was taking place inside the transformer which aggravated to major fault causing transformer to trip on differential and REF protection. Operation of PVR, Buchholz and SPR indicates that due to arcing pressure inside the tank might have increased. Results of magnetizing current measurement, magnetic balance, voltage ratio measurement and insulation resistance measurement tests carried out after the fault indicates inter-winding fault in R-phase. However, exact cause and location of fault could be ascertained after detailed internal inspection at manufacturer’s works.

7. **Failure of 100MVA, 220/66-33/11 kV Transformer EMCO make installed at 220kV S/Stn. Wazirpur, DTL**
A. Name of Substation : 220kV Substation Wazirpur
B. Utility/Owner of substation : Delhi Transco Limited
C. Faulty Equipment : Power transformer
D. Rating : 220/33/11kV, 100 MVA
Vector group: YNyn0d11
E. Make : EMCO
F. Sr. No. : HT1870/13208
G. Year of manufacturing : 2010-11
H. Year of commissioning : 2014
I. Date and time of occurrence/discovery of fault : 19.10.2016 at 1648Hrs.
J. Information received in CEA : 16.11.16
K. Fault discovered during : Transformer was at no load at the time of fault
L. Present condition of equipment : Transformer is to be repaired at OEM Works.
M. Details of previous maintenance : Magnetic balance test, magnetizing current test, ratio test, IR test, BDV measurement of OLTC oil were carried out on 09.09.2016 along with the cleaning of bushings, checking of oil levels, contactor, gaskets etc. and electrical testing of OLTC surge relay, Buchholz etc. Tan delta and capacitance measurement test were carried out on 18.01.16. DGA was carried out on 22.07.16 and CO₂ & CO were found to be more than permissible limit.
N. Details of previous failure : No previous failures
O. Sequence of events/ Description of failure : On 19.10.16 at 1648 hrs., the transformer tripped on Buchholz Alarm and Differential relay. Transformer was on no load at the time of tripping.
P. Details of Tests done after failure : 1. Magnetic Balance Test
2. Magnetizing current.
3. Tan delta of windings and bushings
4. Dissolved Gas Analysis of transformer oil
5. Voltage Ratio Test
6. Insulation Resistance
7. Winding Resistance

Q. Observations & Probable cause of failure

Voltage ratio test between HV-IV carried out after fault indicates a deviation more than 0.5% from the factory results. This could be due to shorted turns in the windings or inter turn fault.

Tan delta of winding (IV-LV & IV-E) values as provided shows a higher annual rise than permissible which indicates considerable deterioration in insulation between IV-LV and IV-Earth, given that the transformer has only been in service for two years.

DGA test reports high acetylene (80.6 ppm), CO₂ (4391 ppm), CO (589 ppm) and TDCG (816 ppm). Roger’s ratio indicates high energy discharge inside the transformer.

DR indicates a fault current of 1.6 kA in the HV side B-phase winding.

Test data indicates that internal fault (inter-turn fault) could be a possible reason of failure.

8. Failure of 500 MVA, 765/400 kV, Y phase ICT-1 at 765/400 kV Bareilly substation of PGCIL

<table>
<thead>
<tr>
<th>A. Name of Substation</th>
<th>: 765 kV Bareilly Substation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Utility/Owner of substation</td>
<td>: PGCIL</td>
</tr>
<tr>
<td>C. Faulty Equipment</td>
<td>: ICT-1 (Y phase)</td>
</tr>
<tr>
<td>D. Rating</td>
<td>: 500 MVA, 765/400 kV</td>
</tr>
<tr>
<td>E. Make</td>
<td>: CGL</td>
</tr>
<tr>
<td>F. Sr. No.</td>
<td>: BH1054-2</td>
</tr>
<tr>
<td>G. Year of manufacturing</td>
<td>: 2013</td>
</tr>
<tr>
<td>H. Year of commissioning</td>
<td>: 2016 (15th November)</td>
</tr>
<tr>
<td>I. Date and time of occurrence/discovery of fault</td>
<td>: 15.11.2016 at 1745 hrs</td>
</tr>
</tbody>
</table>
J. Information received in : 08.12.2016
CEA

K. Fault discovered during : Commissioning

L. Present condition of equipment : Under defect liability period, to be replaced

M. Details of previous maintenance : No O&M history of the transformer. Transformer was previously put as cold spare at Lucknow substation.

N. Details of previous failure : Nil

O. Sequence of events/Description of failure : On 15.11.2016 at 1745 Hrs., 765/400 kV, 500 MVA, Y-phase unit of ICT-1 tripped on operation of Differential, PRD and Buchholz relay, during charging for the first time.

The following indications were noted at the time of tripping:

i) 17:45:49:549 - 400 kV LV side of ICT bay was closed

ii) 17:45:49:569 - Transformer Differential Protection Operated

iii) 17:45:49:576 - PRD Tripped

iv) 17:45:49:682 - Buchholz relay Tripped

v) 17:45:49:621 - 400 kV LV side ICT bay of tripped by protection

System conditions at the time of failure of transformer were as under:

<table>
<thead>
<tr>
<th>Name of element</th>
<th>Load in MW (1700 hrs)</th>
<th>Load in MW (1800 hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 kV Bareilly- Kashipur TL-1</td>
<td>-123</td>
<td>-122</td>
</tr>
<tr>
<td>400 kV Bareilly- Kashipur TL-2</td>
<td>-123</td>
<td>-122</td>
</tr>
<tr>
<td>400 kV Bareilly- Bareilly TL-1</td>
<td>359</td>
<td>309</td>
</tr>
<tr>
<td>400 kV Bareilly- Bareilly TL-2</td>
<td>359</td>
<td>309</td>
</tr>
<tr>
<td>765/400 kV ICT 2</td>
<td>530</td>
<td>372</td>
</tr>
<tr>
<td>765/400 kV ICT 1</td>
<td>In shut down</td>
<td>In shut down</td>
</tr>
<tr>
<td>765 kV Lucknow- Bareilly TL</td>
<td>-530</td>
<td>-372</td>
</tr>
</tbody>
</table>

Fault current of approx. 20 kA was observed from the DR of differential relay and Directional O/C. There was no advancement in reading of counter of Y Phase LA with respect to previous record.

P. Details of Tests done after failure

DGA

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Description</th>
<th>Before charging (15.11.2015 at 17:42)</th>
<th>After tripping</th>
<th>Remarks</th>
</tr>
</thead>
</table>

29

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H₂</td>
<td>2 ppm</td>
<td>0 ppm</td>
<td>The AC supply to the equipment was switched off immediately after tripping as a precautionary measure.</td>
</tr>
<tr>
<td>2</td>
<td>H₂O</td>
<td>3 ppm</td>
<td>3 ppm</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C₂H₂</td>
<td>733 ppm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All the pre commissioning tests were repeated after tripping of ICT. (Details not provided)

Q. Observations:

DGA test done after tripping shows very high concentration of acetylene (733 ppm) indicating high energy discharge.

External and internal inspections were carried out by PGCIL officials on 02.12.2016.

A) External Inspection

The physical inspection was carried out and no visual deformation in body of transformer was seen. Only marks of oil flow out of PRD were seen on the body of Transformer.

B) Internal Inspection

i) HV winding insulation close to the point where HV Lead take off from the winding was burnt.

ii) Pressboard insulation covering the HV lead take off close to winding was burnt.

iii) Inter turn Insulation was dislodged.

iv) Excessive burnt material was found at the bottom of the tank.

v) Carbon particles were found to be floating in oil.

R. Probable cause of failure: Very high concentration of acetylene (733 ppm) in oil and operation of differential relay, PRD and buchholz relay indicates high energy discharge inside the tank. Based on DGA result and internal inspection, prima facie the failure may be attributed to HV winding insulation failure. As the extent of winding damage can’t be ascertained at site, in view of inaccessibility of complete active part, the root cause analysis of failure can be carried out at CGL factory.

9. Failure of 315 MVA, 400/220 kV ICT-II at 400 kV Nawada substation of HVPNL

A. Name of Substation: 400 kV Nawada substation

B. Utility/Owner of substation: HVPNL
C. Faulty Equipment : ICT-II

D. Rating : 315 MVA, 400/220 kV

E. Make : AREVA

F. Sr. No. : B-30543

G. Year of manufacturing : 2010

H. Year of commissioning : 2013

I. Date and time of occurrence/discovery of fault : 22.04.2015 @ 00:18 hrs.

J. Information received in CEA : 02.11.2015

K. Fault discovered during : Operation

L. Present condition of equipment : The damaged ICT was lying at the site. Information is not available as to whether the faulty ICT has been replaced.

M. Details of previous maintenance

 a. Tests conducted on 07.01.2015:

<table>
<thead>
<tr>
<th>TESTS</th>
<th>REQUIREMENT IS:1866</th>
<th>TEST VALUE</th>
<th>CONFIRMITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Strength (Break Down Voltage) (kV RMS (Min.) at 50Hz)</td>
<td>IS:6792</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>Water Content(PPM)(Max)</td>
<td>IS:13567</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

 b. Tests conducted on 04.01.2015:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Characteristics</th>
<th>CPRIRTLDDL2014 S0309</th>
<th>CPRIRTLLOL2014 S0310</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Interfacial Tension @ 27°C, mN/m</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>2.</td>
<td>Electric strength. BDV.Kv(MS)</td>
<td>Readings</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td></td>
<td>69.5, 70.5, 76.5, 79.9, 74.7, 73.8, 70.9, 75.0, 74.9</td>
<td>72.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72.6, 63.0</td>
<td>76.3, 78.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72.1</td>
<td>74.9</td>
</tr>
<tr>
<td>No.</td>
<td>Test Conducted Date</td>
<td>Test Results</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>30.01.2015</td>
<td>Test results details:</td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>19.11.2014</td>
<td>Test results details:</td>
<td></td>
</tr>
</tbody>
</table>

3. Dielectric Dissipation Factor (Tan Delta), @90°C

<table>
<thead>
<tr>
<th>Test</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric constant @ 90°C</td>
<td>2.05</td>
<td>2.04</td>
</tr>
</tbody>
</table>

4. Specific Resistance (Resistivity) x 1016 Ohm@

<table>
<thead>
<tr>
<th>Test</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°C</td>
<td>280</td>
<td>290</td>
</tr>
<tr>
<td>27°C</td>
<td>4250</td>
<td>4350</td>
</tr>
</tbody>
</table>

5. Water Content, mg/kg (PPM)

<table>
<thead>
<tr>
<th>Test</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

6. Dissolved Gas Analysis

<table>
<thead>
<tr>
<th>Test</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane, ppm</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ethane</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Ethylene, ppm</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Acetylene, ppm</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Hydrogen, ppm</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Carbon Monoxide, ppm</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Carbon Dioxide, ppm</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

c. Test conducted on 30.01.2015:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Gas</th>
<th>Qty. Detected (in ppm)</th>
<th>Indication obtained from the test results/Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Methane(CH4)</td>
<td>4</td>
<td>The present gas-in-oil data, obtained after preventive maintenance followed by degassing of the oil, shall be viewed as a benchmark for future reference. The next oil sample for DGA may be sent after 3 months to monitoring the condition.</td>
</tr>
<tr>
<td>2</td>
<td>Ethane(C2H6)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ethylene(C2H4)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Acetylene(C2H2)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Carbon dioxide(CO2)</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Hydrogen(H2)</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

d. Test conducted on 19.11.2014:

Thermovision scanning of 400 kV Nawada was carried out; the whole 400 kV substation was checked by thermal imager & following hot spots were found:

i. AA1-1-89AY (Y phase Isolator middle point)
ii. AA2-5-89A (Isolator R phase jaw)
iii. 220 kV bay no. A-8 (Bay breaker) – R phase top clamp

N. Details of previous failure : Nil

O. Sequence of events/: Description of failure
The sequence of events are as under:-

- On 22-4-2015, two 400/220 kV, 315 MVA ICTs were running in parallel connected on LV side through 220 KV Bus-coupler at 400 KV S/Stn Nawada.

- Two 220 KV circuits viz., A5 ckt-l and A5 ckt-ll were feeding 220 KV S/Stn A-5. At 220 kV S/Stn A5, both the 220 KV ckt. were connected on separate buses and 220 kV Bus-coupler was in OFF condition.

- At 400kV/S/Stn Nawada, the 220 kV A5-ckt-ll tripped at 21:41 Hrs on 21-4-2015. Distance Protection Scheme relay details are as under-

 Distance Protection Scheme Main -1 Operation:
 2. Start phase AB,
 3. Tripped Phase ABC,
 4. Trip Zone=1,
 5. Frequency 50.04 HZ,
 6. Fault Duration = 73.28 ms
 7. Trip relay time=79.94ms
 8. Fault Location=3.390km
 9. Fault Resistance = 2.509 mΩ
 10. IA-9.398 kA, IB-9.172 kA, IC=269.0 A
 11. V_{AN}=64.74 kV, V_{BN}=63.29 kV, V_{CN}=127.3 kV

- The 220kV A-5 Ckt-II line was patrolled by the T/L staff and line clearance was given.

- A5 ckt-ll was charged from 400 KV S/Stn Nawada at 00:18 Hrs. on 22.04.2015.

- The 220 KV A5 ckt-ll did not hold and tripped showing distance relay with SOTF with following details:-

 A) Distance relay Scheme Main -1 Operation as detailed below:
 1. Time 00:18 Hrs Dated : 22.04.2015
 2. Start Phase ABC,
 3. Tripped Phase ABC,
 4. Trip Zone= 1,
 5. SOTF
 6. Frequency = 50.06 HZ,
 7. Fault Duration = 66.59 ms,
 8. Trip Relay Time = 79.90 ms
 9. Fault Location 3.553 km
 10. Fault resistance — 175.6 mΩ
 11. I_A-9.748 kA, I_B-8.953 kA, I_C=10.54 kA
12. $V_{AN} = 8.865 \text{kV}, V_{BN} = 6.954 \text{kV}, V_{CN} = 7.604 \text{kV}$

B) Distance relay Scheme Main-2 operation as below:

1. SOTF and carrier sent

- Simultaneously the 400/220 W, 315 MVA ICT-2 showing following relays:-
 1. REF
 2. Buchholz Alarm
 3. Buchholz Trip
 4. PRVT
 5. OSR
 6. O/C on HV Side & LV side

- Site visit report on 22.4.2015 is as under:
 1. O/C on HV side: $I_R = 2.927 \text{kA}, I_Y = 3.106 \text{kA}, I_B = 2.933 \text{kA}$.
 2. O/C on LV side $I_R = 5.261 \text{kA}, I_Y = 3.433 \text{kA}, I_B = 5.189 \text{kA}$.
 3. The REF Relay (P632) indicates $I_{ref} = 2.70 \text{A}$.
 4. The Differential Relay (P633) indicated time = 00:18:30 s

- The body of the ICT22 was found bulged and burst along with damage of 220 KV Y-Phase Bushing. The entire oil of the ICT-2 was leaked out in the pit below the ICT.

- The line was again patrolled from TL staff and Red phase jumper at tower no. 22 (no. starting from 220 KV A5 S/Stn.) was found broken.

P. Details of Tests done after failure:

No tests could be carried out as the ICT was physically damaged with bulging and bursting of the body.

Q. Observations:

- DGA test results of the ICT-2 dated 21-4-2014 conducted by the CPRI were abnormal and lab’s remarks were as under:

 “DGA Indicates thermal fault of high temperature > 700 degree centigrade, over heating of copper due to eddy currents, bad connection/ joints. It is recommended for Internal inspection.”

- As per record the internal inspection of the TIF was carried out in December 2014:

 "220 KV PALM Allen Screws and spring washers (inside the corona shield) were found badly carbonized and spark marks were present on both Allen screws and spring washers of Y phase busing. In R and B Phase bushing, palm
screws and palm washers were found in order. However, none of the corona screws were said to be loose. In view of the transformer DGA problem due to issue of allen sc ew and spring washer. However, the carbonized screws and washers were replaced with new screws and spring washers along with additional plain washers."

"OIL leakage/ seepage has been observed from CT epoxy terminal of HV Turrets, R and Y – ph Tap Changer top cover, PRV towards cooler side, Buchholz relay flange joint and same has been attended after tightening its fixing bolts.

- That 220 kV A-5 CKT-2 line tripped on dt 21.4.2015 at 21:41 Hrs and the maximum fault currents recorded by different relays at 21:41 Hrs on 21.4.2015 at 400 kV S/Stn Nawada per data downloaded and supplied by M&P Faridabad are as under.

Table A: Fault current data at 21:54 Hrs on 21.4.2015

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Name of CB</th>
<th>Currents (in Amp)</th>
<th>Relay name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R-Phase</td>
<td>Y-Phase</td>
</tr>
<tr>
<td>1.</td>
<td>A5 ckt-2</td>
<td>9525</td>
<td>9259</td>
</tr>
<tr>
<td>2.</td>
<td>ICT-2 LVL</td>
<td>4914</td>
<td>4545</td>
</tr>
<tr>
<td>3.</td>
<td>ICT-1 LVL</td>
<td>4743</td>
<td>4490</td>
</tr>
<tr>
<td>4.</td>
<td>ICT-2 LVL</td>
<td>2596</td>
<td>2511</td>
</tr>
<tr>
<td>5.</td>
<td>ICT-1 LVL</td>
<td>2600</td>
<td>2472</td>
</tr>
</tbody>
</table>

- The event waveform of the 220 kV A5 ckt-2 and both the ICTs was checked and found that the fault remained / persisted only for about 80 m sec and the fault was cleared with the tripping of A5 ckt-2 circuit breaker in 80 m sec. The fault current of the line was shared by both the ICTs i.e. ICT -1 and ICT- 2 with above details.
- The 220 kV A5 ckt -2 was being switched on at 00:18 Hrs. on 22.04.2015 but the 220 kV A-5 ckt A-5 line tripped instantaneously and the maximum fault currents recorded by different relays at 00:18 Hrs. on 22.04.2015 at 400 kV S/Stn. Nawada as per data downloaded and supplied by M&P Faridabad are as under:--
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>R-Phase</th>
<th>Y-Phase</th>
<th>B-Phase</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A5 ckt-2</td>
<td>14913</td>
<td>17714</td>
<td>13623</td>
<td>DPR P442 Main - 1</td>
</tr>
<tr>
<td>2</td>
<td>ICT-2 LV</td>
<td>7322</td>
<td>13240</td>
<td>6458</td>
<td>O/C P141</td>
</tr>
<tr>
<td>3</td>
<td>ICT-1 LV</td>
<td>6962</td>
<td>7482</td>
<td>6564</td>
<td>O/C P141</td>
</tr>
<tr>
<td>4</td>
<td>ICT-2 HV</td>
<td>33650</td>
<td>32858</td>
<td>3584</td>
<td>O/C P141</td>
</tr>
</tbody>
</table>

- The 220 kV A5 ckt-2 was switched on at 00:18 Hrs. on 22-04-2015. The same tripped by the DPR on SOTF relay. Again the fault current on 220 kV A5 ckt-2 as above (Table –B) remained for about 80 msec. The fault current of the line was shared by both the ICTs in R and B phase but in Y- phase of LV OF ICT-2 it was abnormally high (Table-B above) as this transformer developed some internal fault as is evident from the currents. The ICT – 2 could not sustain this internal fault. Due to this internal fault, an explosion took place in the ICT tank resulting in bulging of the body and opening of joint of front side sheet (LV) and bottom sheet.

R. Probable cause of failure : The transformer was supplied to the site in Feb. 2011, and stored for 14 months in nitrogen filled state. The transformer failure could have been due to dielectric failure of the winding insulation during system short circuit which in turn could have been due to the gravitational damage of oil during storage in gas filled condition which created small cavities with trapped moisture/gases.

10. Failure of 100 MVA, 220/66 kV Transformer at 220 kV Madanpur substation of HVPNL.

A. Name of Substation : 220 kV S/Station, Madanpur (Panchkula)

B. Utility/Owner of substation : HVPNL

C. Faulty Equipment : Transformer

D. Rating : 220/66 kV, 100 MVA

E. Make : BHEL, Jhansi

F. Sr. No. : 2014333
G. Year of manufacturing : 2002

H. Year of commissioning : 2003 (16th January)

I. Date and time of occurrence/discovery of fault : 13.03.2015.

J. Information received in CEA : 2.11.2015

K. Fault discovered during : Transformer was running on no-load after annual maintenance. The Transformer tripped off and oil spilled out from main tank of the transformer.

L. Present condition of equipment : Damaged

M. Details of previous maintenance : Annual periodical maintenance was done on 12.03.2015.

N. Details of previous failure : 1. The Buchholz alarm appeared on the FACIA window on Dt. 08.07.2004. The T/F Core-Yoke clamp found short. Then, BHEL representative visited the Sub- Station on Dt. 27.07.2004 – 04.08.2004 and Bakelite insulation was provided between the Core & Yoke clamp of T/F.
 2. The Buchholz alarm appeared on the FACIA window on Dt. 01.01.2005. The T/F Core-Yoke clamp found short. Again, BHEL representative visited the Sub- Station on Dt. 06.01.2005 and Bakelite sheet of 12mm thickness inserted between the Core & Yoke clamp of T/F.

O. Sequence of events/Description of failure : On 13.03.2015, T/F running on No- Load after periodic maintenance, tripped off and oil comes out from the main tank of the T/F and following relays operated:
 1. Differential relay (R & Y Phase) with master trip (HV Side)
 2. Buchholz Trip & Alarm
 3. PRV of Main Tank
 4. O/C Relay (Y-Phase)
 5. REF Relay (LV Side) with master trip (LV Side)
 6. Oil & winding Temperature alarm (HV Side)

 b) The M & P team carried out the complete testing of T/F i.e. TTR, magnetizing current test, flux distribution test, winding resistance test etc. The test
result of the T/F were not found satisfactory by M&P Team and recommended internal inspection by PTRW team and also for DGA test of the T/F.

c) The PTRW team visited the S/Station on 14.03.2015 & 15.03.2015. About 100 nos. drum of oil have been drained out from T/F and on inspection form top and side inspection window it was found that small copper particle and large carbon particles have been found on Y-phase of the T/F and Y-Phase HV winding found disturbed. They recommended that T/F is not repairable at site.

P. Details of Tests done after failure:

DGA:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Gas</th>
<th>Qty. detected (in ppm)</th>
<th>Indication obtained from the test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Methane (Ch4)</td>
<td>42</td>
<td>The key gas acetylene indicates discharges of high energy in the oil. As per Roger’s Diagnostic method, the concentration of the gases in the oil is indicative of power arcing in the transformer.</td>
</tr>
<tr>
<td>2.</td>
<td>Ethane (C2H6)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Ethylene (C2H4)</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Acetylene (C2H2)</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Carbon dioxide (CO2)</td>
<td>4557</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Hydrogen (H2)</td>
<td>134</td>
<td></td>
</tr>
</tbody>
</table>

Flux Distribution Test (Magnetic Balance Test):

<table>
<thead>
<tr>
<th></th>
<th>Rn (V)</th>
<th>Yn (V)</th>
<th>Bn (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV</td>
<td>260</td>
<td>0</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>260</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>259</td>
<td>0</td>
<td>260</td>
</tr>
<tr>
<td>LV</td>
<td>268</td>
<td>0</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>250</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>262</td>
<td>0</td>
<td>263</td>
</tr>
</tbody>
</table>

Magnetizing current test:

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>Y</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV</td>
<td>430 mA</td>
<td>890 mA</td>
<td>430 mA</td>
</tr>
<tr>
<td>LV</td>
<td>4.2 A</td>
<td>8.5 A</td>
<td>4.28 A</td>
</tr>
</tbody>
</table>
Q. Probable cause of failure: Operation of differential relay, REF, PVR, buchholz, OTI/WTI, O/C relay indicates fault inside the transformer tank which lead to flow of high current, generation of gases and buildup of high pressure. Results of magnetic balance test, magnetizing current test and physical inspection indicates faults involving Y-phase. High value of acetylene also indicates discharges of high energy in the oil. HVPNL in its report has suspected poor workmanship as one of the causes of failure, as problem of poor insulation between core and yoke has been observed in the past in this transformer and other transformers purchased together with this transformer. BHEL may review its transformer design and improve workmanship quality.

11. Failure of 220/132 kV, 100 MVA Power Transformer II at Pulivendula substation of APTRANSCO.

A. Name of Substation: 220 kV SS Pulivendula
B. Utility/Owner of substation: APTRANSCO
C. Faulty Equipment: Power Transformer- II
D. Rating: 100 MVA, 220 kV /132 kV
E. Make: BHEL
F. Sr. No.: 2005071
G. Year of manufacturing: 1989
H. Year of commissioning: 2010 (May 26th)
I. Date and time of occurrence/discovery of fault : 11.10.2015 at 03:58 Hrs.

J. Information received in CEA : 12.01.2016

K. Fault discovered during : Operation

L. Present condition of equipment : To be replaced

M. Details of previous maintenance : Regularly maintained. (Details about maintenance are not available)

N. Details of previous failure : Transformer tripped on E/F and differential protection. TRE wing tested and declared the transformer defective on 23.06.2006.

O. Sequence of events/Description of failure : On 11.10.2015 at 03:58 hrs, 132 kV Pulivendula – Lingala line tripped on Distance protection with A,B,C relay indications, distance 0.8 km. There was heavy rain and lightning at the time of failure. ‘Y’ phase LA blasted. Buchholz relay of transformer operated.

P. Details of Tests done after failure : Turns Ratio test, Magnetic balance test, Insulation resistance test, SC test, OC test Magnetizing current test and Winding resistance test. (Details not provided by the utility)

Q. Probable cause of failure & observations : As reported by utility, the transformer was declared faulty due to inter turn short in ‘Y’ phase winding and recommended for replacement with new 100 MVA transformer. There is a gap of 21 years between year of manufacture and commissioning at Pulivendula. Whether the transformer was installed at another substation or was kept idle during this period is not known. Also if it was kept idle, how was it stored is not known.

12. Failure of 100 MVA Power Transformer at Tadikonda substation of APTRANSCO

A. Name of Substation : 220kV/132/33kV Substation, Tadikonda

B. Utility/Owner of substation : APTRANSCO

C. Faulty Equipment : 100MVA PTR-II
D. Rating : 220/132kV
E. Make : EMCO
F. Sr. No. : 1439/11894
G. Year of manufacturing : 1999
H. Year of commissioning : 1999 (27th July)
I. Date and time of occurrence/discovery of fault : 24.08.2016 at 1810 Hrs.
J. Information received in CEA : 17.10.16
K. Fault discovered during : Operation
L. Present condition of equipment : Transformer is not reparable
M. Details of previous maintenance : Last maintenance on 20.07.2016
N. Details of previous failure : NA
O. Sequence of events/Description of failure : On 24.08.16, at 1810 hrs, 220 /132 kV Power transformer- II failed during operation. Due to blasting of the HV side B-ph bushing, the transformer caught fire.
P. Details of Tests done after failure : No tests were possible as the transformer was burnt
Q. Observations : Connected BP boom, TA tower and auxiliary bus were damaged.
R. Probable cause of failure : Sufficient information is not available to draw any conclusion. Probably failure of B ph HV bushing could be reason failure of transformer.

13. Failure of 160 MVA Power Transformer at Gudivada substation, APTRANSCO

A. Name of Substation : 220kV SS, Gudivada
B. Utility/Owner of substation : APTRANSCO
C. Faulty Equipment : Power Transformer
D. Rating : 220/132 kV, 160 MVA
E. Make : TOSHIBA
F. Sr. No. : 90156A03
G. Year of manufacturing : 2015
H. Year of commissioning : 2015 (15th July)
I. Date and time of occurrence/discovery of fault : 24.09.2016 at 0405 Hrs.
J. Information received in CEA : 02.11.16
K. Fault discovered during : Operation
L. Present condition of equipment : To be replaced
M. Details of previous maintenance : Last General Maintenance was done on 19.07.2016
N. Details of previous failure : No previous failures
O. Sequence of events/Description of failure :
 • On 24.09.2016 at 0405 Hrs., transformer tripped on following indications:
 a) HV O/L and E/F
 b) Differential Relay
 c) PRV Trip
 d) Main Buchholz relay
 e) OLTC Buchholz relay(R-Phase)
 f) HV/LV winding temp alarm
 g) Oil temp alarm
 h) Low oil level alarm
 • Fault current of 11 kA was recorded during the fault.

P. Details of Tests done after failure : Internal inspection was done. Following damages found inside the Power Transformer during internal inspection:
a) Flashover marks were found between HV Y-Phase corona shield and core clamp bolts.
b) All battens of OLTC selector switch of R-Phase and few battens in OLTC selector switch of Y & B Phases were found in broken condition.
c) There was no dislocation of core and windings inside the Tank.
d) Oil was leaking from several places from Bottom tank curb due to shearing of tank cover at stiffener location due to severe pressure build up in the PTR.
e) The oil color was found to be black.
f) 3 nos. of HV & IV bushings found dislocated at flange and insulator joint location.

Q. Probable cause of failure : Operation of Differential relay along with operation of Buchholz, OLTC Buchholz & PRV relays indicates fault inside the transformer. Operation of E/F indicates that fault involves ground. The flow of heavy fault current (11 kA) in windings might have led to the rise in winding temperature and operation of OTI and WTI alarm.

As stated in the report submitted by the utility, the oil color had turned to black indicating deterioration of insulating property.

Heavy current due to the fault might have led to generation of gases and sudden pressure rise inside the transformer tank and tripping of Buchholz & PRV. PRV being a slow operating device might not have been able to bring down the gas pressure inside the tank to safe value and high rate of rise of gas pressure might have resulted in cracks at weak areas of the transformer tank.

14. Failure of 230/110/11 kV, 100 MVA Auto transformer-II at 230 kV Manali substation of TANTRANSCO

A. Name of Substation : 230 kV Manali substation
B. Utility/Owner of substation : TANTRANSCO
C. Faulty Equipment : Auto transformer-II
D. Rating : 230/110/11 kV, 100 MVA
E. Make : EMCO (OLTC make : EASUN-MR
 HV bushing make: CGL

43
IV bushing make: LTRENCH)

F. Sr. No. : HT 1738/12847

G. Year of manufacturing : 2007

H. Year of commissioning : 2008 (July 7th)

I. Date and time of occurrence/discovery of fault : 01.12.2015 at 19:51 hrs.

J. Information received in CEA : 30.03.2016

K. Fault discovered during : Operation

L. Present condition of equipment : Replaced

M. Details of previous maintenance :
 a) IV (110 kV) Y phase bushing clamps replaced on 21.9.2011
 b) Periodical Oil sample testing done on 25.3.2014
 c) Defective differential protection relay was replaced on 23.5.2014
 d) B phase LV bushing rod replaced by newly machined rod by TRB wing along with oil seals.

N. Details of previous failure : Nil

O. Sequence of events/Description of failure : On 01.12.2015 at 19:51 hrs, the auto transformer failed.

 1) No oil in the Transformer as the oil drain valve had burst and opened.
 2) All Bushings (3 Nos. -230 kV, 3 Nos – 110kV, 3Nos.- 11 kV and 1 No Neutral bushing) were burst.
 3) Main tank on bottom side was slightly bulged.
 4) Inspection cover was opened and all windings were found to be physically normal.
 5) All 3 Nos. OLTCs were damaged.
 6) Transformer burnt due to fire

Winding condition needs to be assessed and for that it has to be lifted.
TANTRANSCO has informed that Y-phase LA and HV & LV breaker mechanism had also failed.

P. Details of Tests done after failure
 LV tan delta was measured and the values were found to be on higher side.

Q. Probable cause of failure
 Sufficient information has not been provided regarding failure of Y-phase LA and HV & LV breaker mechanism. It is difficult to comprehend the information provided by TANTRANSCO and to reach at any conclusion.

15. Failure of 100 MVA, 230/110 kV Auto transformer-II at 230 kV Gummidipoondi substation of TANTRANSCO

 A. Name of Substation : 230 kV Gummidipoondi substation
 B. Utility/Owner of substation : TANTRANSCO
 C. Faulty Equipment : Auto transformer-II
 D. Rating : 100 MVA, 230/110 kV
 E. Make : BHEL
 F. Sr. No. : 2007460
 G. Year of manufacturing : 1993
 H. Year of commissioning : 1994
 I. Date and time of occurrence/discovery of fault : 31.03.2016 at 0604 hrs
 J. Information received in CEA : 23.08.2016
 K. Fault discovered during : Operation
 L. Present condition of equipment : Replaced
 M. Details of previous maintenance : Last maintenance done on 05.01.16
 N. Details of previous failure : Information not available
O. Sequence of events/ Description of failure : On 31.03.16, at 0604 hrs, auto transformer –II tripped with Buchholz trip indication. At the same time disc flashover on Y and B –ph 110 kV SIPCOT-II feeder at SIPCOT-II s/s was observed. Auto transformer-II was idly test charged at 1954 hrs on 01.04.16 but it tripped with differential relay indication.

P. Details of Tests done after failure : On 31.03.16, DGA test was conducted and sharp increase in acetylene was found. On 01.04.16, DC resistance, tan delta and SFRA test were conducted.

Q. Probable cause of failure : It appears that disc flashover in 110 kV SIPCOT-II feeder caused arcing due to loose contacts or damaged insulation inside transformer which led to generation of acetylene and operation of buchholz trip. TRB Wing examined the faulty transformer and reported that defective Y-phase winding is suspected and the same has to be ascertained only after lifting the coil which could not be carried out at site.

16. Failure of 33.3 MVA, 220/110 kV, 1-phase transformer of 100 MVA transformer bank at 220 kV Edamon substation of KSEB

A. Name of Substation : 200 kV Substation, Edamon

B. Utility/Owner of substation : KSEB Ltd.

C. Faulty Equipment : B-phase transformer (single-phase auto transformer) of transformer bank # 1

D. Rating : 33.33 MVA, $\frac{220}{\sqrt{3}}/\frac{110}{\sqrt{3}}/11$ kV

E. Make : BHEL

F. Sr. No. : 6004019

G. Year of manufacturing : 1977

H. Year of commissioning : 1978

I. Date and time of occurrence/discovery of fault : 04.05.2016 at 1711 hrs.

J. Information received in CEA : 03.06.16

K. Fault discovered during : Operation
L. Present condition of equipment: Damaged

M. Details of previous maintenance: The unit was overhauled in April 2014 and last equipment testing was conducted on 28.01.16 in which all results were found satisfactory. Diverter switch replaced on 02.06.14, HV Bushing oil top up and OLTC Buchholz overhauled on 03.06.14. Again HV bushing oil was filled on 25.08.15. External cleaning, silica gel replacing, tightening of connections, nuts and bolts etc. were carried out on 21.03.16. HV Bushing oil leakage arrested on 20.04.16.

N. Details of previous failure: Information not available

O. Sequence of events/ Description of failure: On 04.05.2016, at 1711 hrs. 110 kV Edamon-Kilimanoor feeder tripped Simultaneously, 100 MVA Transformer bank #1 tripped with following relays:
 (1) Oil temp: alarm
 (2) Oil temp: trip
 (3) Tripping relay 86.2
 (4) LBB lock out relay
After inspection the transformer was test charged and again the transformer tripped on differential protection and on Buchholz alarm on B-phase unit. Relay indication of Edamon-Kilimanoor feeder is distance protection A-C-G trip, Zone 1. There was heavy lightning and rain during the time of failure.

P. Details of Tests done after failure: Tan δ test - Increase in value in HV Side
 Excitation current test – HV-N exciting current is high with distorted waveform while on LV side could not be tested as the test kit was tripping on overcurrent.
 Winding resistance test – Current could not rise on HV-N & LV-N winding resistance test. It was suspected that the neutral terminal is broken.
 % Ratio error test - % Ratio error noticed in HV-LV & HV - TV with distorted current wave form and in LV - TV the test kit tripped on over current.
Q. Observations : Upon internal inspection of the unit, spreading of pieces of wooden support and insulating material inside the transformer tank was noticed. Copper granules were found on the wall of transformer inside the transformer tank.

R. Probable cause of failure : In the DGA, values of key gases and TDCG were found to be above permissible limit which suggests high energy discharge in the transformer. Based on the observation of test results, fault in the windings near neutral end is possible. The transformer has been in service for about 38 years. Ageing could have led to the deterioration of the winding insulations. It is very difficult, based on available information, to ascertain exact cause and location of fault.

17. Failure of R-Phase 167 MVA single phase transformer of 500 MVA, 400/220/33 kV Bank-2 at 400 kV Hoody substation of KPTCL.

A Name of Substation : 400 kV Hoody receiving station

B Utility/Owner of substation : KPTCL

C Faulty Equipment : Auto transformer (R phase) of ICT2 bank

D Rating : 1-Ph, 167 MVA, 400/220/33 kV

E Make : CGL

F Sr. No. : T8907/3

G Year of manufacturing : 2003

H Year of commissioning : 2004

I Date and time of occurrence/discovery of fault : 02.06.2016 at 0315 hrs.

J Information received in CEA : 30.08.2016

K Fault discovered during : Operation

L Present condition of equipment : Completely burnt.
M Details of previous maintenance:
1) Tan delta was carried out on 21.05.2016 and values were well within the limits.
2) Transformer mounted protection relays were tested on 21.05.2016 and found ok.
3) Transformer oil sample were sent for testing on 22.04.2015 and test results were normal.
4) Transformer bay maintenance was done on 28.02.16.

N Details of previous failure:
None

A Sequence of events/Description of failure:
On 02.06.16 at 0315 hrs, 400 kV bushing of R phase auto transformer of ICT2 bank flashed over and strong fire emanated. ICT2 tripped on following relays: differential relay, buchholz relay R-ph, PRD trip R-ph, OSR R-ph, winding temp trip and oil temp trip.
Fault current on HV side is recorded as 15352 A and LV side 2198 A.

P Details of Tests done after failure:
None, as transformer is completely burnt.

Q Probable cause of failure:
Operation of buchholz, PRD, OSR, WTI & OTI trip indicates that high energy discharge might have took place inside transformer which caused pressure rise in the tank. Failure of bushing causing arcing inside transformer followed by oil leakage from bushing might have resulted in fire. Internal inspection of transformer is required to assess the condition of the winding & the core and to ascertain the exact cause of failure.

18. Failure of 315 MVA, 400/220/33 kV ICT- I at 400 kV Meramundali Grid substation of OPTCL.

A. Name of Substation: 400 kV Meramundali Grid Substation
B. Utility/Owner of substation: Odisha Power Transmission Corporation Ltd.
C. Faulty Equipment: Auto Transformer
D. Rating: 315 MVA, 400/220/33 kV
E. Make: BHEL, Bhopal
F. Sr. No.: 6005742
G. Year of manufacturing : 2002
H. Year of commissioning : 2005 (May 31st)
I. Date and time of occurrence/discovery of fault : 12.11.2016@ 23:11 hrs
K. Fault discovered during : Operation
L. Present condition of equipment : Completely damaged
M. Details of previous maintenance : Measurement of Insulation Resistance, Capacitance & Tan delta on bushings and windings on 03.03.15; oil testing including DGA on 19.05.16 and leakage current measurement of LA on 31.01.15 were carried out and results were found to be in order.
N. Details of previous failure : Nil
O. Sequence of events/Description of failure : On 12.11.2016 at 23:11 hrs., a loud sound was heard accompanied by tripping of both sides CBs of the ICT, with following relay indications:
1. Differential relay
2. High set over current & earth fault relay at LV and HV sides
3. REF relay
4. PRV
5. Buchholz relay
6. WTI
7. OTI
HV & LV bushings burst and all LAs on both HV & LV sides were damaged. B phase HV side caught fire, which further spread to entire ICT. Fault current of 31.251 kA in 400 kV side (B phase) and 5.35 kA in 220 kV side (B-phase) was recorded in disturbance recorder of differential relay.
The fire was contained through water and foam tenders in six hours.
At the time of failure, the load on the transformer was 100 MW.
P. Details of Tests done after failure : There was extensive damage to the main tank, bushings, windings, core and other accessories; hence, no test could be done.
Q. Observations:

a) The ICT was found with huge damage in main tank, core, winding including all its accessories like conservator, pipe work, headers, A-frame, radiator and fans which were burnt due to excessive fire.
b) The main tank foundation was also found damaged with few cracks in the concrete and cooling bank foundation was completely damaged. The MS channel embedded with rails was found dislodged from foundation.
c) All windings were burnt exposing bare copper shrunk towards the bottom. The core was burnt, damaged & dislodged and was found lying on the bottom in the tank.
d) All 400 kV, 220 kV, 33kV & Neutral bushings were found completely damaged. All OLTC were damaged and burnt. One tank stiffener below the IV-B phase was dislodged from the main tank and had flown around 25 m away from ICT.
e) All LAs of 220 kV side and 400 kV side were damaged. However, counters of only 400 kV side LAs were found burnt. The counter reading of R-phase 220 kV side LA showed one increment from pre-fault reading.
f) The Pre-fault temperature of ICT were seen and found normal.
g) Differential relay was not synchronized with GPS clock.
h) Transformer was manufactured in 2002 and commissioned in 2005. During this period how transformer was stored or maintained is not known.

R. Probable cause of failure:

From the operation of Differential, REF, O/C & E/F relays and flow of severe current in B phase it appears that the failure might have taken place due to failure of B-phase winding insulation or B phase HV bushing. Flow of severe current in windings might have led to rise in winding & oil temperature and operation of WTI & OTI Trip. High energy arcing due to fault might have led to sudden pressure rise in tank and tripping of Buchholz & PRV. Oil attained temperature beyond fire point and contacted fire after coming in contact with the oxygen through cracked tanks.
19. Failure of 250 MVA, 15.75/220 kV GT-3 at RTPS of KPCL.

A. Name of Substation : Raichur Thermal Power Station.
B. Utility/Owner of substation : KPCL
C. Faulty Equipment : Generator Transformer -3
D. Rating : 250MVA, 15.75/220kV
E. Make : CGL
F. Sr. No. : 25009
G. Year of manufacturing : 1990
H. Year of commissioning : 1991
I. Date and time of occurrence/discovery of fault : 23.05.15 at 15:48 Hrs.
J. Information received in CEA : 03.11.2015
K. Fault discovered during : Operation (while in Service with a load of 213 MW)
L. Present condition of equipment : Replaced with repaired GT of Unit-I. Spare GT is being used for Unit-I.

M. Details of previous maintenance : During Dec. 2013, Annual Over Hauling of GT-3: Capacitance and tan delta values of HV bushing recorded are as under –

<table>
<thead>
<tr>
<th>Phase</th>
<th>Capacitance in pF</th>
<th>Tan δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>220.65</td>
<td>0.00355</td>
</tr>
<tr>
<td>Y</td>
<td>218.20</td>
<td>0.00338</td>
</tr>
<tr>
<td>B</td>
<td>225.25</td>
<td>0.00328</td>
</tr>
</tbody>
</table>

IR Value was as Follows

<table>
<thead>
<tr>
<th>HV to Earth</th>
<th>15 Sec</th>
<th>60 Sec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200 MΩ</td>
<td>225 MΩ</td>
</tr>
</tbody>
</table>

During April 2014, in shutdown condition tap changed from 11 to 12 as per requirement of LDC.
During Sept. 2014 AOH works, gasket of B phase LV bushing was replaced. Oil Filtration was carried out, capacitance and ten delta measurements of HV bushing were recorded.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Voltage in kV</th>
<th>Capacitance pF</th>
<th>Tan δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>2</td>
<td>222.93</td>
<td>0.0014</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>224.09</td>
<td>0.0010</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>224.11</td>
<td>0.0009</td>
</tr>
<tr>
<td>Y</td>
<td>2</td>
<td>214.34</td>
<td>0.0035</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>214.26</td>
<td>0.0043</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>214.11</td>
<td>0.0043</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>223.94</td>
<td>0.0174</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>224.10</td>
<td>0.0172</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>224.12</td>
<td>0.0172</td>
</tr>
</tbody>
</table>

IR Values was as follows

<table>
<thead>
<tr>
<th></th>
<th>15 Sec</th>
<th>60 Sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV to Earth</td>
<td>240 MΩ</td>
<td>260 MΩ</td>
</tr>
</tbody>
</table>

Transformer oil tests were carried out using CPRI mobile van during Feb-2014 and Feb. 2015 CPRI remark dated 10-02-2015 are as follows.
1. Oil parameters are within the permissible limits as per IS/1866-2000
2. DGA results indicate normal internal condition. It is recommended to monitor the transformer after one year as a routine maintenance check.

N. Details of previous failure : No Previous Failure
O. Sequence of events/ Description of failure : From sequence Event recorder (SER) it is found that the GT Restricted Earth Fault relay, Overall differential relay, Buchholz stage-I & II, OLTC Surge Relay, winding temp high, oil temp high etc., had operated. The GT caught fire.

P. Details of Tests done after failure : M/s CGL representative arrived at RTPS site and inspection & testing of GT3 was carried out on 26.05.2015 & 27.05.2015
1. The LV tests on the faulty GT (Magnetic Balance, turns ratio test, magnetizing current measurement & (insulation resistance) were conducted.
2. Y-phase of LV winding indicates shorted turns, since it was drawing more current as per LV tests.
3. Melted Copper granules/ buds was found deposit on Y-phase Compression board, yoke and it between HV winding.

Q. Probable cause of failure : During LV tests conducted on GT after failure, Y phase LV winding was found to be carrying high current which indicates fault in the Y phase winding. This fault induced gas generation & high pressure in
the tank resulting in operation of PRV and Buchholz relay. Flow of high fault current increased temperature of oil and windings.

20. Failure of 207 MVA, 21/400 kV GT (Y phase) Unit # 1 at BTPS of KPCL.

A. Name of Substation : Bellary Thermal power Station
B. Utility/Owner of substation : KPCL
C. Faulty Equipment : GT (Y phase) Unit # 1
D. Rating : 207 MVA, 21/400/√3 kV
E. Make : BHEL
F. Sr. No. : 6006698
G. Year of manufacturing : 2012
H. Year of commissioning : 2015 (April 22nd)
I. Date and time of occurrence/discovery of fault : 28.08.2015 at 22:52 hrs
J. Information received in CEA : 04.11.2015
K. Fault discovered during : Operation
L. Present condition of equipment : Replaced
M. Details of previous maintenance : Following works were carried out during AOH in Aug 2015:
 a. Oil Filtration
 b. Checking of healthiness of temperature indicators
 c. Checking of healthiness of oil level indicators
 d. Checking of transformer protection/annunciation circuits
 e. Checking of healthiness of radiator fans/pump circuits
 f. Periodic oil testing by CPRI Bangalore
N. Details of previous failure : Failed on 06.04.2015 at 14:06 hrs
O. Sequence of events/ Description of failure

Unit-1 was under shutdown from 07.08.2015 to 28.08.2015 for annual overhauling. After the completion of overhauling activities, synchronization activity started on 28.08.2015 @ 22:15 Hrs. Unit-1 turbine speed was brought to 2957 RPM. Then excitation system was started in auto mode from HBP (Hardwired Backup Panel) in UCB room. Immediately unit-1 got tripped @ 22:15:05:946 Hrs. with the following protections & annunciations even before synchronization of the unit.

1. Unit-1 tripped on class A protection as detailed below:
 1.1 Gen circuit breaker was already in open condition.
 1.2 Group-2: Gen & GT R Phase Overall Differential protection operated 87OAR static relay.
 1.3 Group-2: Gen & GT Y Phase Overall Differential protection operated 87OAY static relay
 1.4 Group-2: Aux. to 87OA operated 87OX
 1.5 Group-2: GT Buch. Trip Y phase operated 30GTC.
 1.6 Group-2: GT PRV-B Y phase operated 30GTH.
 1.7 Group-2: 286A, 286X, 286AY operated.
 1.8 Group-1: Timer for 186A operated 2/186A.
 1.9 Group-1: 186A, 186AX, 186AY operated.
 1.10 Group-1: Timer for 2/286A operated.
 1.11 Group-1: GT PRV-A Y phase operated 30GTP.
 1.12 Group-1: 87/51NGT numerical relay: LED7: 2nd Harmonic block.
 1.13 Group-1: 87/51NGT numerical relay: LED1: General trip.
 1.15 Group-1: GR1 numerical relay: LED11: VT fuse failure
 1.16 Group-1:GR1 numerical relay : LED12:CB open
 1.17 Group-1:GR1 numerical relay : LED14: Dead machine trip.
 1.18 Group-2:To aux.21G backup impedance R&Y flag operated. 21G2X
 1.20 Group-2: Timer for 21G2 operated 2/21G2B
1.22 Group-2: Timer for 186C operated 2/186C.
1.23 Group-1: 186C, 286CX operated.
1.24 Group-1: Timer for 2/286C operated.
1.25 Group-1: VT WDG1 fuse fail 60G 11 operated.
1.27 286TU, 186TU operated.
1.28 Field CB open.
1.29 Turbine tripped.

A team of experts from BHEL Bhopal inspected the site and observed following points during inspection/investigation:
1. LV side turret got deformed & 2 nos. stiffeners got damaged at top near LV turret. Oil spilled from LV turret sealing.
2. HV bushing was dismantled and no physical damage was noticed.

P. Details of Tests done after failure:
1. During testing LV side magnetizing current was found 26.5mA as against pre-commissioning value of 8mA.
2. Continuity between HV & neutral terminal showing 9.9KΩ.
3. IR values were more than 1.6 GΩ for all the windings.
4. Isolation (CC-CL-E) more than 10 MΩ.

Q. Probable cause of failure:
During excitation/voltage building there appears to be failure of LV windings which resulted in operation of electrical protections, PRV & Buchholz relay. LV side turret got deformed and oil spilled over from LV turret sealing due to excessive oil pressure in GT.

21. Failure of 250 MVA, 15/420 kV, 3-ph Generator Transformer at Raichur Thermal Power Station of KPCL

B. Name of Substation : Raichur Thermal Power Station
C. Utility/Owner of substation : Karnataka Power Corporation Ltd.
D. Faulty Equipment : GT-4
E. Rating : 250 MVA, 15/420 kV
F. Make : M/s CGL

G. Sr. No. : T-8331

H. Year of manufacturing : 1993

I. Year of commissioning : 1994 (Sept 28th)

J. Date and time of occurrence/discovery of fault : 28.02.2016 at 0811 hrs

K. Information received in CEA : 22.07.2016

L. Fault discovered during : Operation

M. Present condition of equipment : Replaced with 3 ph 250 MVA 15.75/420 kV transformer (TELK make) (Rewound/reconditioned failed GT-7)

N. Details of previous maintenance : Oil filtration, BDV test, capacitance and tan delta tests etc. were carried out during overhauling in August 2014 and August 2015. Annual testing of transformer oil was done by CPRI.

O. Details of previous failure : Information not available

P. Sequence of events/Description of failure : During the synchronization of GT-4, the unit tripped with sound. Sequence event recorder indicates that the GT PRD, Overall differential relay, Buchholz stage-II had operated. Oil spillage was observed from PRD.

Q. Details of Tests done after failure : Following tests were carried out on failed GT on 29.02.16:
 a. IR test
 b. Turns ratio test
 c. Magnetic balance test
 d. Winding resistance test

INSULATION RESISTANCE TEST:

<table>
<thead>
<tr>
<th></th>
<th>T1(10 secs)</th>
<th>T2(60 secs)</th>
<th>PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV TO LV(5KV)</td>
<td>530 MΩ</td>
<td>1.36 GΩ</td>
<td>2.58</td>
</tr>
<tr>
<td>LV TO E(1KV)</td>
<td>914 MΩ</td>
<td>1.96 GΩ</td>
<td>2.15</td>
</tr>
<tr>
<td>LV TO E(5KV)</td>
<td>453 MΩ</td>
<td>8.69 MΩ</td>
<td>1.91</td>
</tr>
<tr>
<td>HV TO E(1KV)</td>
<td>1.01 GΩ</td>
<td>1.73 GΩ</td>
<td>1.71</td>
</tr>
<tr>
<td>HV TO E(5KV)</td>
<td>648 MΩ</td>
<td>1.31 GΩ</td>
<td>2.01</td>
</tr>
<tr>
<td>CORE TO E</td>
<td></td>
<td>90 KΩ</td>
<td></td>
</tr>
</tbody>
</table>
TRANSFORMER TURNS RATIO TEST:

<table>
<thead>
<tr>
<th>TAP POSITION</th>
<th>R</th>
<th>Y</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36.16</td>
<td>17.99</td>
<td>835.2</td>
</tr>
<tr>
<td>2</td>
<td>35.75</td>
<td>17.79</td>
<td>835.5</td>
</tr>
<tr>
<td>3</td>
<td>35.33</td>
<td>17.57</td>
<td>838.0</td>
</tr>
<tr>
<td>4</td>
<td>34.91</td>
<td>17.37</td>
<td>827.3</td>
</tr>
<tr>
<td>5</td>
<td>34.12</td>
<td>16.96</td>
<td>842.2</td>
</tr>
<tr>
<td>6</td>
<td>34.11</td>
<td>16.96</td>
<td>843.7</td>
</tr>
<tr>
<td>7</td>
<td>33.71</td>
<td>16.75</td>
<td>860.9</td>
</tr>
<tr>
<td>8</td>
<td>33.29</td>
<td>16.55</td>
<td>854.9</td>
</tr>
<tr>
<td>9a</td>
<td>32.88</td>
<td>16.34</td>
<td>862.34</td>
</tr>
<tr>
<td>9b</td>
<td>32.84</td>
<td>16.34</td>
<td>865.3</td>
</tr>
<tr>
<td>9c</td>
<td>32.84</td>
<td>16.32</td>
<td>846.3</td>
</tr>
<tr>
<td>10</td>
<td>32.45</td>
<td>16.12</td>
<td>847.6</td>
</tr>
<tr>
<td>11</td>
<td>31.90</td>
<td>15.88</td>
<td>794.7</td>
</tr>
<tr>
<td>12</td>
<td>31.50</td>
<td>15.68</td>
<td>812.1</td>
</tr>
<tr>
<td>13</td>
<td>31.09</td>
<td>15.48</td>
<td>796.7</td>
</tr>
<tr>
<td>14</td>
<td>30.69</td>
<td>15.27</td>
<td>817.1</td>
</tr>
<tr>
<td>15</td>
<td>30.30</td>
<td>15.08</td>
<td>830.2</td>
</tr>
<tr>
<td>16</td>
<td>29.92</td>
<td>14.88</td>
<td>843.1</td>
</tr>
<tr>
<td>17</td>
<td>29.52</td>
<td>14.70</td>
<td>880.1</td>
</tr>
</tbody>
</table>

MAGNETIC BALANCE TEST:

<table>
<thead>
<tr>
<th>RN</th>
<th>YN</th>
<th>BN</th>
<th>ry</th>
<th>yb</th>
<th>Br</th>
</tr>
</thead>
<tbody>
<tr>
<td>244V</td>
<td>244V</td>
<td>0V</td>
<td>12V</td>
<td>12V</td>
<td>0V</td>
</tr>
<tr>
<td>244V</td>
<td>244V</td>
<td>0V</td>
<td>12V</td>
<td>12V</td>
<td>0V</td>
</tr>
<tr>
<td>55V</td>
<td>63V</td>
<td>243V</td>
<td>0V</td>
<td>0V</td>
<td>0V</td>
</tr>
</tbody>
</table>

MAGNETISING CURRENT TEST:

HV SIDE (APPLIED VOLTAGE 246.2 VOLTS)

<table>
<thead>
<tr>
<th>TAP 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN</td>
</tr>
<tr>
<td>YN</td>
</tr>
<tr>
<td>BN</td>
</tr>
</tbody>
</table>

LV SIDE (APPLIED VOLTAGE - 30 VOLTS)

<table>
<thead>
<tr>
<th>TAP 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ry</td>
</tr>
<tr>
<td>yb</td>
</tr>
<tr>
<td>br</td>
</tr>
</tbody>
</table>
WINDING RESISTANCE TEST:

<table>
<thead>
<tr>
<th>TAP NO.</th>
<th>RN</th>
<th>YN</th>
<th>BN</th>
<th>ry</th>
<th>yb</th>
<th>br</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7601 Ω</td>
<td>50.96 mΩ</td>
<td>50.54 mΩ</td>
<td>1.55 mΩ</td>
<td>5.36 mΩ</td>
<td>5.60 mΩ</td>
</tr>
<tr>
<td>2</td>
<td>0.7544 Ω</td>
<td>50.96 mΩ</td>
<td>50.65 mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.7484 Ω</td>
<td>50.96 mΩ</td>
<td>50.70 mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.7428 Ω</td>
<td>50.96 mΩ</td>
<td>50.98 mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.7371 Ω</td>
<td>50.96 mΩ</td>
<td>51.00 mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.7313 Ω</td>
<td>50.96 mΩ</td>
<td>51.02 mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.7255 Ω</td>
<td>50.95 mΩ</td>
<td>51.03 mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.7201 Ω</td>
<td>50.96 mΩ</td>
<td>51.04 mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9a</td>
<td>0.7118 Ω</td>
<td>50.95 mΩ</td>
<td>51.05 mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9b</td>
<td>0.7117 Ω</td>
<td>50.95 mΩ</td>
<td>51.05 mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9c</td>
<td>0.7115 Ω</td>
<td>50.95 mΩ</td>
<td>51.05 mΩ</td>
<td>1.58 mΩ</td>
<td>6.68 mΩ</td>
<td>5.77 mΩ</td>
</tr>
<tr>
<td>10</td>
<td>0.7196 Ω</td>
<td>50.94 mΩ</td>
<td>51.05 mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.7252 Ω</td>
<td>50.93 mΩ</td>
<td>51.06 mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.7311 Ω</td>
<td>50.92 mΩ</td>
<td>51.05 mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.7367 Ω</td>
<td>50.88 mΩ</td>
<td>51.04 mΩ</td>
<td>1.58 mΩ</td>
<td>6.83 mΩ</td>
<td>5.92 mΩ</td>
</tr>
<tr>
<td>14</td>
<td>0.7426 Ω</td>
<td>50.85 mΩ</td>
<td>50.93 mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.7483 Ω</td>
<td>50.81 mΩ</td>
<td>50.88 mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.7542 Ω</td>
<td>50.78 mΩ</td>
<td>50.89 mΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.7601 Ω</td>
<td>50.78 mΩ</td>
<td>50.90 mΩ</td>
<td>1.72 mΩ</td>
<td>7.24 mΩ</td>
<td>6.11 mΩ</td>
</tr>
</tbody>
</table>

R. Probable cause of failure: Operation of overall differential, PRD and buchholz indicate towards internal fault. High energy arcing due to fault inside the transformer tank might have led to sudden pressure rise in tank and tripping of Buchholz & PRV. Magnetic balance test (zero voltage across B-phase winding) and magnetizing current measurement (1740 mA in B-phase which is very high) test reports indicate that inter-turn fault might have taken place in phase B. However, Internal inspection of GT is required to assess actual cause of failure and condition of windings & core.

22. Failure of 250 MVA, 15/420 kV GT of Unit 4 at RTPS of KPCL

A. Name of Substation: RTPS, Shaktinagar, Raichur
B. Utility/Owner of substation: RTPS
C. Faulty Equipment: GT of Unit 4
D. Rating: 250 MVA, 15/420 kV
<table>
<thead>
<tr>
<th></th>
<th>Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E.</td>
<td>Make</td>
<td>CGL</td>
</tr>
<tr>
<td>F.</td>
<td>Sr. No.</td>
<td>Information not available</td>
</tr>
<tr>
<td>G.</td>
<td>Year of manufacturing</td>
<td>1992</td>
</tr>
<tr>
<td>H.</td>
<td>Year of commissioning</td>
<td>1994 (Sept. 28th)</td>
</tr>
<tr>
<td>I.</td>
<td>Date and time of occurrence/discovery of fault</td>
<td>28.02.2016 at 08:11 hrs</td>
</tr>
<tr>
<td>J.</td>
<td>Information received in CEA</td>
<td>07.03.2016</td>
</tr>
<tr>
<td>K.</td>
<td>Fault discovered during</td>
<td>Operation</td>
</tr>
<tr>
<td>L.</td>
<td>Present condition of equipment</td>
<td>Information not available</td>
</tr>
<tr>
<td>M.</td>
<td>Details of previous maintenance</td>
<td>Information not available</td>
</tr>
<tr>
<td>N.</td>
<td>Details of previous failure</td>
<td>Information not available</td>
</tr>
<tr>
<td>O.</td>
<td>Sequence of events/Description of failure</td>
<td>It was found that the GT Pressure Relief Device (PRD), Overall Differential Relay, Buchholz Stage II etc had operated. Oil spillage was observed from PRDs.</td>
</tr>
<tr>
<td>P.</td>
<td>Details of Tests done after failure</td>
<td>Information not available</td>
</tr>
<tr>
<td>Q.</td>
<td>Probable cause of failure</td>
<td>GT had served for 21 years. Ageing might be a reason of failure.</td>
</tr>
</tbody>
</table>
REACTORS

23. Failure of 420 kV, 80 MVAR Bus reactor at 400 kV Kota substation of PGCIL

A. Name of Substation : 400 kV Kota Substation
B. Utility/Owner of substation : PGCIL
C. Faulty Equipment : Bus reactor
D. Rating : 420 kV, 80 MVAR
E. Make : BHEL
F. Sr. No. : 6006288
G. Year of manufacturing : 2008
H. Year of commissioning : 2009 (25th February)
I. Date and time of occurrence/discovery of fault : 28.09.2016 at 00:43 hrs.
J. Information received in CEA : 08.12.2016
K. Fault discovered during : Operation
L. Present condition of equipment : To be replaced
M. Details of previous maintenance:

The said Reactor was having higher levels of CO & CO\textsubscript{2} since commissioning; however, furan traces were normal. The moisture levels were high since commissioning as evident from the oil test results in Table 1. Reactor was dried out twice in April & September 2015, but moisture reappeared after recommissioning. In DGA sample dated 13.08.2016, violation of H\textsubscript{2} was observed and same was found to be in increasing trend in subsequent samples (Refer: Table 1). Busing DGA was carried out in April 2016 and increase in H\textsubscript{2} was observed in Y phase bushing DGA (Refer: Table 2).

Controlled switching device for reactor switching was commissioned on 21.09.13, and has been in successful operation since then.

Table 1

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>H\textsubscript{2}</th>
<th>CH\textsubscript{4}</th>
<th>C\textsubscript{2}H\textsubscript{4}</th>
<th>C\textsubscript{2}H\textsubscript{6}</th>
<th>C\textsubscript{2}H\textsubscript{2}</th>
<th>CO</th>
<th>CO\textsubscript{2}</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-Sept-16</td>
<td>1518</td>
<td>355</td>
<td>447</td>
<td>42</td>
<td>365</td>
<td>182</td>
<td>3623</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>06-Sept-16</td>
<td>544</td>
<td>27</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>203</td>
<td>4206</td>
<td>17</td>
</tr>
<tr>
<td>13-Aug-16</td>
<td>200</td>
<td>14</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>208</td>
<td>7599</td>
<td>19</td>
</tr>
<tr>
<td>5-Mar-16</td>
<td>21</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>150</td>
<td>5548</td>
<td>15</td>
</tr>
<tr>
<td>6-Jan-16</td>
<td>57</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>150</td>
<td>4838</td>
<td>13</td>
</tr>
<tr>
<td>24-Oct-15</td>
<td>17</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>94</td>
<td>1098</td>
<td>19</td>
</tr>
<tr>
<td>7-Sep-15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>19-Jun-15</td>
<td>21</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>112</td>
<td>2103</td>
<td>21</td>
</tr>
<tr>
<td>20-Apr-15</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>554</td>
<td>22</td>
</tr>
<tr>
<td>21-Mar-15</td>
<td>40</td>
<td>33</td>
<td>15</td>
<td>9</td>
<td>0</td>
<td>410</td>
<td>20159</td>
<td>19</td>
</tr>
<tr>
<td>29-Nov-14</td>
<td>75</td>
<td>36</td>
<td>17</td>
<td>9</td>
<td>0</td>
<td>480</td>
<td>20717</td>
<td>19</td>
</tr>
<tr>
<td>25-Oct-13</td>
<td>37</td>
<td>26</td>
<td>16</td>
<td>8</td>
<td>0</td>
<td>369</td>
<td>16669</td>
<td>14</td>
</tr>
<tr>
<td>4-Jul-12</td>
<td>39</td>
<td>22</td>
<td>16</td>
<td>6</td>
<td>0</td>
<td>275</td>
<td>14076</td>
<td>19</td>
</tr>
<tr>
<td>25-Nov-11</td>
<td>59</td>
<td>22</td>
<td>16</td>
<td>13</td>
<td>0</td>
<td>313</td>
<td>13536</td>
<td>12</td>
</tr>
<tr>
<td>7-Oct-10</td>
<td>32</td>
<td>12</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>234</td>
<td>8506</td>
<td>17</td>
</tr>
<tr>
<td>9-Oct-09</td>
<td>21</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>107</td>
<td>3951</td>
<td>10</td>
</tr>
<tr>
<td>1-May-09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>244</td>
<td>10</td>
</tr>
<tr>
<td>1-May-09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>244</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Bushing</th>
<th>Sample Date</th>
<th>H₂</th>
<th>CH₄</th>
<th>C₂H₄</th>
<th>C₂H₆</th>
<th>C₂H₂</th>
<th>CO</th>
<th>CO₂</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Phase</td>
<td>19.09.2014</td>
<td>0</td>
<td>13</td>
<td>2</td>
<td>42</td>
<td>0</td>
<td>73</td>
<td>1624</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>28.08.2013</td>
<td>59</td>
<td>25</td>
<td>2</td>
<td>43</td>
<td>0</td>
<td>230</td>
<td>1541</td>
<td>0</td>
</tr>
<tr>
<td>Y Phase</td>
<td>30.04.2016</td>
<td>177</td>
<td>42</td>
<td>2</td>
<td>76</td>
<td>0</td>
<td>466</td>
<td>6192</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>19.09.2014</td>
<td>115</td>
<td>44</td>
<td>4</td>
<td>77</td>
<td>0</td>
<td>637</td>
<td>5591</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>28.08.2013</td>
<td>92</td>
<td>36</td>
<td>3</td>
<td>67</td>
<td>0</td>
<td>551</td>
<td>4149</td>
<td>0</td>
</tr>
<tr>
<td>B Phase</td>
<td>30.04.2016</td>
<td>91</td>
<td>34</td>
<td>2</td>
<td>43</td>
<td>0</td>
<td>487</td>
<td>9088</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>19.09.2014</td>
<td>76</td>
<td>33</td>
<td>2</td>
<td>46</td>
<td>0</td>
<td>395</td>
<td>7831</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>28.08.2013</td>
<td>70</td>
<td>29</td>
<td>2</td>
<td>41</td>
<td>0</td>
<td>308</td>
<td>6200</td>
<td>0</td>
</tr>
</tbody>
</table>

N. Details of previous failure : No previous failures
O. Sequence of events/ Description of failure

On 28.09.2016 at 00:43 hrs., 420 kV, 80 MVAR Bus reactor tripped on operation of following relays.

<table>
<thead>
<tr>
<th>SEQUENCE OF EVENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>28-09-16 00:39:31:542 hrs</td>
<td>Buchholz Alarm operated</td>
</tr>
<tr>
<td>28-09-16 00:43:12:248 hrs</td>
<td>Differential Operated</td>
</tr>
<tr>
<td>28-09-16 00:43:12:288 hrs</td>
<td>PRD relay Operated</td>
</tr>
<tr>
<td>28-09-16 00:43:31:253 hrs</td>
<td>TEE Differential Operated</td>
</tr>
<tr>
<td>28-09-16 00:43:12:263 hrs</td>
<td>REF Operated</td>
</tr>
<tr>
<td>28-09-16 00:43:12:271 hrs</td>
<td>Master Trip relay- 86 A Operated</td>
</tr>
<tr>
<td>28-09-16 00:43:12:272 hrs</td>
<td>Master Trip relay-86 B Operated</td>
</tr>
<tr>
<td>28-09-16 00:43:12:305 hrs</td>
<td>Buchholz Trip Operated</td>
</tr>
</tbody>
</table>

Reactor immediately caught fire and fire was extinguished by fire hydrant system within few minutes of occurrence of incidence. Fault current of 9.54 kA rms was observed in B-phase winding of Bus Reactor. Increment of 01 number was observed in reactor LA counter of B-phase.

P. Details of Tests done after failure

1. **DGA**

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>H2</th>
<th>CH4</th>
<th>C2H4</th>
<th>C2H6</th>
<th>C2H2</th>
<th>CO</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-Sept-16</td>
<td>1518</td>
<td>355</td>
<td>447</td>
<td>42</td>
<td>365</td>
<td>182</td>
<td>3623</td>
</tr>
</tbody>
</table>

2. **Magnetization Current Test**

<table>
<thead>
<tr>
<th>Phase</th>
<th>Previous value in mA</th>
<th>Post failure value in mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Y</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>B</td>
<td>108</td>
<td>110</td>
</tr>
</tbody>
</table>

3. **Winding Resistance Measurement**

<table>
<thead>
<tr>
<th>Combination</th>
<th>Pre Failure Results in mΩ</th>
<th>Post Failure Results in mΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-N</td>
<td>2035</td>
<td>2044</td>
</tr>
<tr>
<td>Y-N</td>
<td>2048</td>
<td>2054</td>
</tr>
<tr>
<td>B-N</td>
<td>2043</td>
<td>2041</td>
</tr>
</tbody>
</table>

4. **Insulation Resistance Measurement**
5. Core Insulation Measurement

<table>
<thead>
<tr>
<th>Combination</th>
<th>Pre Failure Results in MOhms</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC-CL</td>
<td>>1000 MOhms</td>
</tr>
<tr>
<td>CC-Earth</td>
<td>0.4 MOhms</td>
</tr>
<tr>
<td>CL-Earth</td>
<td>>1000 MOhms</td>
</tr>
</tbody>
</table>

Q. Observations:

Following observations were made by PCGIL Officials:

i. All 420 kV bushings were found to be damaged. B phase bushing was found to be burnt and bent from flange. Oil end side porcelain of B phase bushing was found to be completely shattered & air end porcelain was found broken form flange cementing joint.

ii. Oil end side porcelain of R-phase bushing was found to be damaged. The porcelain part of neutral bushing was found to be slightly dislocated.

iii. Tank top cover was found to be bulged from the tank top welded joints and cracks were observed in stiffener from tank top. Foundation bolts/nuts were also found to be damaged/dislocated from original position.

iv. Flashover marks were found on the lower end of BCT portion and corona ring in B-phase bushing. CT terminal block of B-phase turret was found damaged.

v. Y-phase winding was found to be damaged severely nearer to lead take off. However, no flashover/ blackening marks were found in this area.

vi. Carbon particles and porcelain pieces were found to be accumulated at the bottom of the tank.

vii. Entire core coil assembly was found to be shifted towards right (looking form Neutral side) and dislocated from the transportation block. Cracks have also been observed in transportation support block.

viii. The possibility of deformation of core cannot be ruled out; detailed assessment can be made only after factory inspection.

ix. During fire extinguishing, water was poured through hydrant point over the damaged bushing and water ingressed into the reactor. Therefore, healthiness of windings can’t be assessed at site.

x. B-phase LA and post insulator of isolator were found to be damaged.

xi. Core Insulation leads were checked and were found to be intact.
R. Probable cause of failure:

Prima facie, the fault seems to have been initiated from B phase as the fault current of 9.54 kA has flown in B phase to ground. The flashover marks were observed in lower section of Bushing CT portion and corona shield and no other flash over marks were observed inside the reactor. It is suspected that failure occurred due to shattering of oil end portion of B phase bushing. Damage to the Y phase winding and other bushing were the consequences of the B phase bushing failure according to PGCIL official report.

As envisaged from the moisture content test results, presence of moisture in the reactor was since commissioning. So atmospheric exposure of winding during manufacturing processing or during storage and commissioning of the reactor cannot be ruled out.

Further, shifting of core coil assembly was observed during inspection. It is suspected that shifting of CCA might have occurred during transportation. FRA signature was not available at site for comparative analysis.

24. Failure of 420 kV, 50 MVAR Vindhyachal-III Line reactor at Satna substation of PGCIL

A. Name of Substation: 400 kV Satna S/s

B. Utility/Owner of substation: PGCIL

C. Faulty Equipment: Line reactor

D. Rating: 420 kV, 50 MVAR

E. Make: BHEL

F. Sr. No.: 6006322

G. Year of manufacturing: 2005

H. Year of commissioning: 2006(Sept. 19)

I. Date and time of occurrence/discovery of fault: 05.11.15 at 0707 hrs

J. Information received in CEA: 05.02.16

K. Fault discovered during: Operation

L. Present condition of equipment: Considering the damage, failed Reactor is found to be beyond repair. Reactor including main tank, radiator pipes and accessories, Lightning arrestors,
M. Details of previous maintenance:
The said Reactor was operating satisfactorily till August 2015. Sudden jump in all fault gasses including C_2H_2 (16 PPM) was observed on 17.09.2015 and same was confirmed in subsequent sampling on 22.09.2015. The Reactor was taken out from service on 23.09.2015 and internal inspection was carried out by PGCIL officials on 01.10.2015 & all three bushings were taken out from main tank. Hot Spot & pitting mark were found in R-phase winding lead terminal. Further, looseness in bolt between busing lead & winding lead of R phase were observed and same were attended. Also B phase bushing was replaced due to crack in flange. Tightening of bolts was carried out and CRM of R-Phase winding lead terminal were found to be 7.7 micro ohm after tightening. Insulation was provided on lead joint for all HV Bushing. Also, there was hair crack in B-phase bushing of BHEL make since commissioning and same was replaced with CGL make Busing. The 150NB connecting pipe used for main tank & Radiator bank had been replaced with 200NB pipe for better cooling and the Reactor was charged on dated 21.10.2015.

N. Details of previous failure: None

O. Sequence of events/ Description of failure:
Following are the events during failure of the Reactor:
a) On 05.11.15, at 07:07:07.843, 420 kV, 50 MVAR Vindhychal #3 Line Reactor (LR) tripped on operation of REF protection and immediately caught fire. Heavy noise was heard by the shift engineer in control room. Fire protection operated automatically immediately after failure and fire hydrant system was used to control the fire. However, fire was so severe that fire tender was called for extinguishing the fire and fire persisted till 06.11.15 evening. 400 kV line was taken into service at 12:37 hrs on 05.11.15 without line reactor. Fault occurred in B-phase of the reactor and fault Current was approx. 27kA. Other slow protection (Buchholz, PRD, WTI, and OTI) did not operated at the time of tripping resulting in confirmation that the fault was not incipient and fault was sudden may be due to internal fault.

b) At 07.07.07.887, the breaker opened, fault current appeared in Y phase of Vindh#3 LR may be due to re-striking voltage. Fault current – 7.09kA
c) At 07:07:12.051hrs., 765kV ICT#2 tripped due to operation of High set element of Diff Protection caused by rise in current in R Phase probably due to dense smoke formed during failure of Reactor. R phase of 400kV Side of ICT is physically adjacent to the failed Line Reactor of 400kV Vindhyachal-Satna#3.

d) At 07:07:12.493, Vindh#4 Line auto reclosed on B – E Fault. This B phase of Vindh#4 line is adjacent to failed reactor of Vindh#3. The fault has been seen by relay in Z1 and it is also confirmed from remote end that fault seen by remote end relay in Z2.

P. Details of Tests done after failure: Reactor had completely burnt and it was not possible to carry out any test.

Q. Observations:

1. Reactor Tank Top welding was uprooted, and was sheared off towards B-phase side and heavy bulging of the Tank was observed towards B Phase.

2. B-Phase Bushing was shattered. Stress shield of B-phase bushing shows no flash over marks. Y Phase Bushing flange cracked and slipped inside the Reactor Tank. Stress shield of the Y phase found with no flash over marks. R Phase Bushing flange and its air end was found damaged. Stress shield of the R Phase Bushing was completely burnt out. The Neutral Bushing was also damaged.

3. No distortion was observed in the top yoke of the Reactor.

4. The axial coil pressing rings of all 3 phases were completely burnt and top shunt of R and Y phase fell on the Reactor winding.

5. Top portion of R phase and Y phase core limbs were damaged due to excessive fire inside the Tank.

6. All Turret CT of R, Y & B phase were completely burnt in this fire incidence.

7. Due to heavy fire inside the Reactor Tank all winding insulations completely burnt.

8. Reactor transport support block were observed intact.

9. The marshalling box, cables, radiator pipe line were also damaged badly due to fire. Conservator tank and Radiator bank were found to be visually ok. However, healthiness of the same needs be ensured.
10. All cleat support and insulation of the Reactor Tank were completely burnt out.

11. NGR, NGR MB, Breather, Buchholz and PRD were found to be visually ok and healthiness of the same needs to be ascertained.

R. Probable cause of failure:
From the DR, it was observed that fault current of 27kA passed through B phase winding. On internal inspection, end shields of B phase and Y phase bushings were found to be intact however R phase end shield was found to be completely burnt. Winding and bushing lead joints of the B phase bushing was found to be intact. There were no flashover marks on the bushing core except burning marks. In view of the above, it was suspected that fault might have been initiated from the B phase winding.

25. Failure of 765 kV, 80 MVAR, Reactor (Y-phase) of Gwalior-II line at 765 kV Bina substation of PGCIL

A. Name of Substation : 765 kV Bina Substation
B. Utility/Owner of substation : PGCIL
C. Faulty Equipment : Line Reactor (Y-phase)
D. Rating : 765 kV, 80 MVAR
E. Make : CGL
F. Sr. No. : BH09821/07
G. Year of manufacturing : 2012
H. Year of commissioning : 2012 (24th December)
I. Date and time of occurrence/discovery of fault : 28.11.2015 at 22:36 hrs.
J. Information received in CEA : 08.12.2016
K. Fault discovered during : Operation
L. Present condition of equipment : Information not available
M. Details of previous maintenance

DGA History:
<table>
<thead>
<tr>
<th>Sampling Date</th>
<th>H₂</th>
<th>CH₄</th>
<th>C₂H₄</th>
<th>C₂H₆</th>
<th>C₂H₂</th>
<th>CO</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/06/2015</td>
<td>24</td>
<td>33</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>280</td>
<td>620</td>
</tr>
<tr>
<td>09/07/2015</td>
<td>28</td>
<td>38</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>347</td>
<td>570</td>
</tr>
<tr>
<td>14/08/2015</td>
<td>25</td>
<td>36</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>324</td>
<td>557</td>
</tr>
<tr>
<td>16/09/2015</td>
<td>28</td>
<td>39</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>362</td>
<td>648</td>
</tr>
<tr>
<td>15/10/2015</td>
<td>25</td>
<td>37</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>338</td>
<td>657</td>
</tr>
<tr>
<td>19/09/2015</td>
<td>24</td>
<td>37</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>338</td>
<td>605</td>
</tr>
</tbody>
</table>

Tan δ & Capacitance Measurement:

<table>
<thead>
<tr>
<th></th>
<th>Pre-Commissioning (24.12.2012)</th>
<th>25.08.2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tan δ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0.30%</td>
<td>0.30%</td>
</tr>
<tr>
<td>N</td>
<td>0.38%</td>
<td>0.37%</td>
</tr>
<tr>
<td>Capacitance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>587 pF</td>
<td>586 pF</td>
</tr>
<tr>
<td>N</td>
<td>270 pF</td>
<td>271 pF</td>
</tr>
</tbody>
</table>

Capacitance & **Tan Delta**

<table>
<thead>
<tr>
<th>WINDING</th>
<th>Tested on 17.02.2014</th>
<th>Factory result</th>
<th>Tested on 17.02.2014</th>
<th>Factory result</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV/Tank-E</td>
<td>4.385 nF</td>
<td>4.394 nF</td>
<td>0.232%</td>
<td>0.197%</td>
</tr>
</tbody>
</table>

N. Details of previous failure : Nil

O. Sequence of events/Description of failure : On 28.11.2015 at 22:36 hrs. 765 kV, 80 MVAR CGL make Gwalior-II Line Y-Phase Reactor installed at Bina s/s tripped & failed on operation of REF protection along with initiation of Differential/Back up impedance/Body protections. Sequence of events are as follows:

<table>
<thead>
<tr>
<th>S/s</th>
<th>Time</th>
<th>Protection</th>
<th>Fault current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bina End</td>
<td>22:36:36.679 hrs.</td>
<td>REF Optd</td>
<td>496 A</td>
</tr>
<tr>
<td></td>
<td>22:36:36.693 hrs.</td>
<td>Diff Optd</td>
<td>12.8 kA</td>
</tr>
<tr>
<td></td>
<td>22:36:37.01 hrs.</td>
<td>DT Send Ch 1 & 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22:36:36.707 hrs.</td>
<td>Main 2 Zone 1 optd</td>
<td>21.8 kA</td>
</tr>
<tr>
<td></td>
<td>22:36:36.718 hrs.</td>
<td>Main 1 Zone 1 optd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22:36:36.722 hrs.</td>
<td>Main CB Open</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22:36:36.723 hrs.</td>
<td>Tie CB Open</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22:36:37.46 hrs.</td>
<td>Buch 1/2 Alarm Y-Ph</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22:36:36.824 hrs.</td>
<td>Buch 1 Trip Y-Ph</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22:36:36.886 hrs.</td>
<td>Buch 2 Trip Y-Ph</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22:36:37.121 hrs.</td>
<td>PRV 2 Y-Ph optd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22:36:37.474 hrs.</td>
<td>PRV 1 Y-Ph optd</td>
<td></td>
</tr>
<tr>
<td>Gwalior End</td>
<td>22:36:36.735 hrs.</td>
<td>DT Receive</td>
<td>3.33 kA</td>
</tr>
<tr>
<td></td>
<td>22:36:36.749 hrs.</td>
<td>Main 1 ZCOM Optd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22:36:37.46 hrs.</td>
<td>Main 2 ZCOM Optd</td>
<td></td>
</tr>
</tbody>
</table>
Details of Tests done after failure:

LV test were carried out on 01.12.2015.

1. **Winding C & Tan Delta measurement:**

<table>
<thead>
<tr>
<th>Winding C & Tan delta in GST mode</th>
<th>Factory value at 10 kV</th>
<th>Post tripping site value at 10 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 kV</td>
<td>4.3943 nF, 0.197%</td>
<td>3.0875 nF, 24.4362%</td>
</tr>
</tbody>
</table>

It is observed that winding Capacitance post failure reduced by 30%, whereas tan delta w.r.t ground increased many times.

2. **Insulation resistance measurement:**

<table>
<thead>
<tr>
<th>Winding configuration</th>
<th>Pre-commissioning</th>
<th>Post tripping site value at 2.5 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC-G (Frame to tank)</td>
<td>>20 G OHMS</td>
<td>0</td>
</tr>
<tr>
<td>CL-G (Core to tank)</td>
<td>>20 G OHMS</td>
<td>121 MOHMS</td>
</tr>
<tr>
<td>CC-CL (Core to Frame)</td>
<td>>20 G OHMS</td>
<td>120 MOHMS</td>
</tr>
<tr>
<td>IR Value at 15 sec</td>
<td>29.8 G OHMS</td>
<td>15.0 MOHMS</td>
</tr>
</tbody>
</table>

IR values of CC-G became zero in Y-Phase.

3. **No Load magnetizing current** at 230 Volts:

<table>
<thead>
<tr>
<th>HV - Neutral</th>
<th>Pre-commissioning value</th>
<th>Post tripping site value</th>
</tr>
</thead>
<tbody>
<tr>
<td>234 V</td>
<td>97.169 mA (at 234 Volt)</td>
<td>94.8 mA (at 240 Volts)</td>
</tr>
</tbody>
</table>

It can be observed that LV magnetizing current post failure reduced around 2.4% compared to pre-commissioning.

4. **DC Winding Resistance** at 75 degrees C:

<table>
<thead>
<tr>
<th>Pre-commissioning value</th>
<th>Post tripping site value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9373 Ohm</td>
<td>4.13 Ohm</td>
</tr>
</tbody>
</table>

The DC Winding resistance post failure is increased by 114% compared to pre-commissioning.

Q. Observations:
On physical inspection, following observations were made:

i) Tank got severely bulged. Stiffeners were found cracked and oil oozed out of the reactor.
ii) The reactor tank was bulged towards neutral side damaging the fire-fighting pipe line. The expansion bellow of bottom header to radiator was found distorted.
iii) Neutral bushing porcelain was found cracked at bottom side.

(B) Internal Inspection:

Internal inspection was carried out jointly by CGL and POWERGRID. Following are the observations after internal inspection.
iv) Most of the pressboard barriers were found broken and burnt.
v) The winding including insulation components viz., washers and caps were found to be dislocated.
vi) Winding near HV bushing lead area was dislocated/deformed and the insulation over winding was also damaged badly. Bare copper was visible in the HV lead area. Similarly, copper was also visible in the bottom part of winding. HV bushing bottom end lead connected with corona shield was found to have burn marks.
vii) Bottom SER (Static End Ring) was found burnt completely. Bottom end Yoke shunt was found dislocated.
viii) Heavy charring of insulation was found inside the tank.

R. Probable cause of failure:

From the DR details, it is observed that heavy fault current of almost 21 kA passed through the winding during the failure. The Reactor tripped on REF protection and subsequently Differential/Backup impedance/Body protection also operated. From the LV tests done after failure, it can be observed that winding tan delta increased many times and IR values for CC-G is zero which indicates failure of insulation.

From the internal inspection, LV test result and DR details, it is suspected that there was an inter-turn fault in the winding near HV bushing termination and may be an internal flashover in the winding from HV bushing termination to the bottom portion of winding as copper was visible at these points. Failure of SER resulted in involvement of ground during failure causing initiation of REF protection.

26. Failure of 420 kV, 125 MVAR Bus reactor-II at 400 kV Binaguri substation of PGCIL

A. Name of Substation : 400 kV Binaguri Substation
B. Utility/Owner of substation : PGCIL
C. Faulty Equipment : Bus Reactor-II
D. Rating : 420 kV, 125 MVAR
E. Make : BHEL
F. Sr. No. : 6006854
G. Year of manufacturing : 2009
H. Year of commissioning : 2012 (28th March)
I. Date and time of occurrence/discovery of fault : 29.02.2016 at 03:55 hrs.
J. Information received in CEA : 08.12.2016
K. Fault discovered during : Operation
L. Present condition of equipment : Repair at manufacturer’s works was recommended.
M. Details of previous maintenance

1. DGA & Oil Parameter History
Fault gases especially H₂, CH₄ and C₂H₄ were showing increasing trend within a year of commissioning. C₂H₄ and CO₂ violation in Reactor observed on 30.09.2013 and same was in rising trend till April 2015. C₂H₂ of 1 ppm appeared on 24.03.2014 and same was stable thereafter. BDV and moisture (ppm) were found to be normal prior to failure.

<table>
<thead>
<tr>
<th>Sampling Date</th>
<th>H₂</th>
<th>CH₄</th>
<th>C₂H₄</th>
<th>C₂H₆</th>
<th>C₂H₂</th>
<th>CO</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.09.2013</td>
<td>43</td>
<td>16</td>
<td>70</td>
<td>8</td>
<td>0</td>
<td>163</td>
<td>4094</td>
</tr>
<tr>
<td>02.07.14</td>
<td>85</td>
<td>60</td>
<td>143</td>
<td>9</td>
<td>0</td>
<td>262</td>
<td>4614</td>
</tr>
<tr>
<td>26.09.14</td>
<td>74</td>
<td>53</td>
<td>123</td>
<td>15</td>
<td>0</td>
<td>161</td>
<td>4550</td>
</tr>
<tr>
<td>16.12.14</td>
<td>107</td>
<td>63</td>
<td>142</td>
<td>9</td>
<td>0</td>
<td>301</td>
<td>5343</td>
</tr>
<tr>
<td>12.02.15</td>
<td>120</td>
<td>69</td>
<td>168</td>
<td>20</td>
<td>0</td>
<td>323</td>
<td>5750</td>
</tr>
<tr>
<td>08.05.15</td>
<td>120</td>
<td>74</td>
<td>179</td>
<td>22</td>
<td>1.41</td>
<td>341</td>
<td>6016</td>
</tr>
<tr>
<td>07.01.16</td>
<td>118</td>
<td>98</td>
<td>211</td>
<td>22</td>
<td>0.6</td>
<td>397</td>
<td>7385</td>
</tr>
<tr>
<td>29.02.16(Post Failure)</td>
<td>4344</td>
<td>703</td>
<td>919</td>
<td>82</td>
<td>645</td>
<td>503</td>
<td>6738</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BDV (kV)</th>
<th>Moisture (ppm)</th>
<th>Resistivity(Ω×cm)</th>
<th>Tan δ</th>
<th>IFT (mN/m)</th>
<th>Acidity (mgKOH/g)</th>
<th>Flash Point°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.08.2015</td>
<td>73.4</td>
<td>9</td>
<td>282.5</td>
<td>0.0009</td>
<td>40.76</td>
<td>0.01315</td>
</tr>
</tbody>
</table>

Last bushing sampling was carried out in July 2014 and results were found to be normal. Variable frequency tan delta of bushings was carried out on 22.07.15 and values of all HV bushings were found to be normal.
2. **Bushing DGA History**

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>H₂</th>
<th>CH₄</th>
<th>C₂H₄</th>
<th>C₂H₆</th>
<th>C₃H₂</th>
<th>CO</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-Ø 1146053</td>
<td>07.07.2014</td>
<td>47</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>02.08.2013</td>
<td>21</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>R-Ø 1146057</td>
<td>07.07.2014</td>
<td>36</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>02.08.2013</td>
<td>18</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>228</td>
</tr>
<tr>
<td>B-Ø 1144075</td>
<td>07.07.2014</td>
<td>32</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>02.08.2013</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>122</td>
</tr>
<tr>
<td>Neutral 1160575</td>
<td>02.11.2015</td>
<td>91</td>
<td>19</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>531</td>
</tr>
<tr>
<td></td>
<td>07.07.2014</td>
<td>79</td>
<td>18</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td></td>
<td>02.08.2013</td>
<td>48</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>266</td>
</tr>
</tbody>
</table>

N. Details of previous failure : Nil

O. Sequence of events/ Description of failure : On 29.02.2016 at 03:55hrs., heavy noise was heard and 420 kV, 125 MVAR Binaguri Bus Reactor-II tripped on operation of following protection:

<table>
<thead>
<tr>
<th>Sequence of event as per SER</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03:55:39:086</td>
<td>Differential Protection (Micom-643)</td>
</tr>
<tr>
<td>03:55:39:121</td>
<td>REF Protection (CAG-14)</td>
</tr>
<tr>
<td>03:55:39:122</td>
<td>Main CB Y phase open</td>
</tr>
<tr>
<td>03:55:39:123</td>
<td>Main CB B phase open</td>
</tr>
<tr>
<td>03:55:39:124</td>
<td>Main CB R phase open</td>
</tr>
<tr>
<td>03:55:39:131</td>
<td>Tie CB B Phase open</td>
</tr>
<tr>
<td>03:55:39:132</td>
<td>Tie CB R & Y Phase open</td>
</tr>
<tr>
<td>03:55:39:143</td>
<td>PRV trip</td>
</tr>
<tr>
<td>03:55:39:162</td>
<td>WTI Trip</td>
</tr>
<tr>
<td>03:55:39:179</td>
<td>OTI Trip</td>
</tr>
<tr>
<td>03:55:39:266</td>
<td>Buchholz Trip</td>
</tr>
</tbody>
</table>

From the DR, it was observed that fault current of 14.4 kA rms passed through Y phase during fault condition. Fault was cleared within 46 msec.

P. Details of Tests done after failure
DGA result post failure:

<table>
<thead>
<tr>
<th>Sampling Date</th>
<th>H₂</th>
<th>CH₄</th>
<th>C₂H₄</th>
<th>C₂H₆</th>
<th>C₂H₂</th>
<th>CO</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.02.16(Post Failure)</td>
<td>4344</td>
<td>703</td>
<td>919</td>
<td>82</td>
<td>645</td>
<td>503</td>
<td>6738</td>
</tr>
</tbody>
</table>

Q. Observations:

Following observation were made by PGCIL officials:

1. Reactor tank top cover welding was uprooted and bulging of the tank was observed towards HV side.
2. Porcelain of B-Phase Bushing air end was shattered from the mid-section porcelain joint portion. Flanges of R & Y phase were found to be intact. Stress shields of all bushings were found intact. Porcelain of oil end portion of the bushing found to be normal in R & B phase bushings. However, same got detached/separated from the metallic joints. Porcelain of oil end portion of the Y-phase bushing was found to be shattered.
3. Heavy carbonization, porcelain pieces and burnt paper/press board were found accumulated at the top of the core and at the bottom of the tank.
4. Burning and damage of outer press board cylinder insulation was observed in Y phase winding.
5. Guide Aluminum pipe for lead of Y phase was found to be displaced from its position. Heavy carbonization observed in Y phase winding nearer to lead take off point. Snout of Y phase was found to be burnt and winding lead take-off came out from its position. Melting of laminations in bottom yoke shield were observed in Y phase limb at three locations. Surface discharge over press board cylinder was observed from lead take-off to bottom yoke shunt. However, no flash over/burning marks were observed in other press board barrier layer in Y phase winding.
6. Melting of Aluminium lead guide tube of Y phase winding and pitting & burning of paper insulation were observed. Connecting lead between Aluminium lead guide tube and lead take-off point was found to be detached. Further, pitting mark was also observed in connecting lead between winding take off and bushing lead.
7. Snout of Y phase winding was found completely burnt. Burning of paper insulation & flash over marks on the surface of Y-ø winding near to lead take-off along with carbon deposition were found in the same location.
8. Turret CTs of all three phase were found to be damaged and cannot be reused.
9. Prima facie, R and B phase winding were found to be visually OK from outside.
10. No distortion was observed in the top yoke of the Reactor.
11. Inspection of Neutral side of the Reactor could not be possible due to less access area. Porcelain of neutral bushing was found to be displace from its position; however, oil level was found to be normal in the bushing.
12. Minor cracks were observed in equalizing connecting pipes. Marshalling box, cables, conservator-reactor tank pipe line and other accessories seemed to be visually OK.
13. Any leakage in Conservator, radiator bank and air cell has to be assessed during recommissioning of Reactor.
14. Due to opening of welded joints, nearly 5 kL, oil spilled out from Reactor during failure and completely wasted.
15. LV tests like magnetizing current & winding resistance test result after failure were found to be comparable with pre-commissioning results and last maintenance results.

R. Probable cause of failure:

From the DR, it was observed that fault current of 14.4 kA passed through Y phase during fault condition. On internal inspection, no flash over mark was observed inside the tank nearer to the bushing end shield. Also end shield of Y phase bushing was found to be intact and no burning and flash over mark was observed in the shattered porcelain area of Y phase bushing oil end portion. In view of the above, failure on account of bushing may be ruled out. Further as evident from the inspection, surface discharge was observed on press board cylinder of Y Phase winding. Tracking in between Aluminium lead guide tube and bottom yoke shunt of Y-phase was observed. As the connecting lead between winding take-off and Aluminium lead guide tube found detached, voltage stress on the lead guide tube may lead to DGA violation as indicated in post failure oil sampling test results. Duval triangle DGA analysis indicates thermal fault. Reason of conduction and tracking between lead guide tube and bottom yoke shunt could not be found out during inspection. Reactor was recommended for repair at manufacturer’s works.
CIRCUIT BREAKERS

27. Failure of SF-6 circuit Breaker (R-phase limb), CT (R phase) & Line Isolator controlling 220 kV Chajjpur ckt-I at 400 kV Panipat substation of BBMB.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Name of Substation : 400 kV s/stn. Panipat</td>
</tr>
<tr>
<td>B.</td>
<td>Utility/Owner of substation : BBMB</td>
</tr>
<tr>
<td>C.</td>
<td>Faulty Equipment : SF-6 Circuit Breaker (R-phase Limb), CT (R phase) & Line Isolator controlling of 220 kV Chajjpur ckt-I</td>
</tr>
<tr>
<td>D.</td>
<td>Rating : 220 kV (CB, CT & Line Isolator)</td>
</tr>
</tbody>
</table>
| E. | Make : 1. Siemens (R phase CB)
2. SCT (R phase CT)
3. Elektrolites (Power) Pvt. Ltd. (Line Isolator) |
| F. | Sr. No. : 1. IND/02/3182 (R phase CB)
2. 2011/47 (R phase CT)
3. Information not available for Line Isolator |
| G. | Year of manufacturing : 1. 2007 (R phase CB)
2. 2014 (R phase CT)
3. 2011 (Line Isolator) |
| H. | Year of commissioning : 2015 (May 29th) for R phase CB, R phase CT & Line Isolator |
| I. | Date and time of occurrence/discovery of fault : 31.05.15 at 21:13 hrs. |
| J. | Information received in CEA : 21.10.2015 |
| K. | Fault discovered during : Operation |
| L. | Present condition of equipment : Damaged |
| M. | Details of previous maintenance : Nil (Commissioned on 29.05.2015) |
| N. | Details of previous failure : Nil |
O. Sequence of events/
Description of failure : On 31.05.2015 at 21:13 hrs, a loud bursting sound was heard and the equipment were found damaged.

P. Details of Tests done after failure : As the equipment burst, the tests after failure were not possible.

Q. Probable cause of failure: : Sufficient information is not available to draw any conclusion. It might be possible that one of the equipment burst and its debris damaged other two equipment. Detail about operation of any protection is also not available.

28. Failure of 220 kV Circuit Breaker of Varahi line- 2 at 220 kV Kemar substation of KPTCL.

A. Name of Substation : 220 kV Receiving Station, Kemar, Karkala

B. Utility/Owner of substation : KPTCL

C. Faulty Equipment : Circuit Breaker

D. Rating : 245 kV

E. Make : ABB

F. Sr. No. : SB 98006DD019

G. Year of manufacturing : 1998

H. Year of commissioning : 2000

I. Date and time of occurrence/discovery of fault : 20.10.2015 at 15:50 Hrs.

J. Information received in CEA : 12.12.2015

K. Fault discovered during : Operation

L. Present condition of equipment : Replaced

M. Details of previous maintenance : The SF6 gas leakage in the said breaker drive mechanism was attended by the ABB service engineer on 14.07.2010.

N. Details of previous failure : Nil
O. Sequence of events/ Description of failure: The ‘Y’ Phase Limb of 220 kV Kemar- Varahi line-2 flashed over on 20.10.2015 at 15:50 Hrs. with a heavy sound. While flashing over it damaged the other two breaker limbs of the ‘R’ and ‘B’ phase of the same breaker. The insulator was flashed over and contacts were burned. During this time heavy lightning was observed. The line was charged on 22.10.2015 at 14:10 Hrs. by using 220 kV Bus coupler breaker as controlling breaker. The faulty breaker limb is to be replaced by the breaker limb available in the spare bay of this station.

P. Details of Tests done after failure: Nil
Q. Probable cause of failure: Heavy current due to lightning might have damaged internal insulation of the breaker.

29. Failure of B phase Tie Circuit Breaker at RTPS of KPCL

A. Name of Substation: Raichur Thermal Power Station
B. Utility/Owner of substation: KPCL
C. Faulty Equipment: Tie Circuit Breaker of Unit 7 (B- Phase)
D. Rating: 2000 A
E. Make: CGL
F. Sr. No.: 15869 C
G. Year of manufacturing: 2002
H. Year of commissioning: 2002
I. Date and time of occurrence/discovery of fault: 12.11.2015 at 00:30 hrs
J. Information received in CEA: 22.12.2015
K. Fault discovered during: During starting and excitation of the Unit after minor maintenance works in turbine.
L. Present condition of equipment: Replaced
M. Details of previous maintenance: AOH works carried out in Nov- 2014
N. Details of previous failure : All the three interrupters had been replaced on 23.06.2010.

O. Sequence of events/ Description of failure : On 12.11.2015, after minor maintenance works in turbine, starting and excitation of the Unit was under process. The insulator of the breaker interrupter failed during Generator Voltage build-up.

P. Details of Tests done after failure : Slow opening and slow closing of the newly erected B Phase interrupter and CRM, DCRM & Breaker timings of all the three phases were checked and found to be OK. M/s CGL (OEM) have inspected and cleared for charging.

Q. Probable cause of failure : The insulator of the breaker interrupter might have failed due to Surface conduction during Generator Voltage build-up.

30. Failure of 400 kV SF6 CB (Y phase limb) at Bhiwani Substation of BBMB

A. Name of Substation : 400 kV Substation, Bhiwani

B. Utility/Owner of substation : BBMB

C. Faulty Equipment : 400kV SF-6 CB/X-2, (Yellow Phase)

D. Rating : 420kV, 3150A, 40KA for 3 Sec.

E. Make : CGL

F. Sr. No. : 14263-C

G. Year of manufacturing : 2001

H. Year of commissioning : 2001 (May 19th)

I. Date and time of occurrence/discovery of fault : 22.01.2016 at 21:18 Hrs.

J. Information received in CEA : 17.02.2016
K. Fault discovered during : Opening of 400 kV Bhiwani-Dehar Line (Through Direct Trip from Dehar end)

L. Present condition of equipment : Yellow phase interrupter chamber including PIR and 1 No. Grading capacitor of this phase were damaged. Chipping on interrupter chamber of blue phase and chipping on 1No. Red Phase grading capacitor was also observed. The clamp of 400 kV yellow Phase CT was also damaged causing leakage of oil from primary terminal of CT.

M. Details of previous maintenance : On 10.11.2015, during maintenance the results of breaker timings & Contact Resistance were found ok.

O. Sequence of events/ Description of failure : Tripping detail pertaining to the failure is as under:

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Name of Equipment</th>
<th>Date & Time of Tripping & Restoration</th>
<th>Indication & Relays</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>400 kV PGCIL Hisar & Bhiwani</td>
<td>- 22.01.2016 at 23:27 Hrs.</td>
<td>Line opened on protection from other end</td>
<td>Opened manually at 21:30 Hrs. dt. 22.01.2016</td>
</tr>
</tbody>
</table>
Report on the incident Damage of Yellow Phase limb of 400 kV CB/X-2

1. On 22.01.2016 at 21:18 Hrs. 400 kV Dehar Bhiwani Line was opened manually from Dehar end due to over voltage.
2. Direct Trip command received through carrier channel at Bhiwani end thereby tripping both the circuit breakers i.e. X-5 & X-2. During opening of breaker arc appeared on the Yellow phase of the C B X-2 followed by a heavy blast.
3. These circuit Breakers are of double break type. On physical inspection line side main contact grading capacitor & PIR of yellow phase limb was found completely damaged.
4. Circuit Breaker X-2 is connected to Bus-2 and fault on this breaker was a Bus-2 fault. Accordingly, Main zone-2 Bus Differential relay has operated but unexpectedly Check Zone Bus bar relay has not operated due to which Bus Bar tripping circuit couldn’t energize and the feeder connected to Bus-2 did not trip.
5. Consequently 400/220 kV ICT Bank tripped on the E/F (High-Set) relay. 400 kV PGCIL Hisar line tripped from Hisar end (Zone-2) and 400 kV PGCIL Bhiwani line tripped from PGCIL Bhiwani end (Zone-2).
6. Thus there was a complete 400 kV failure at the sub-station.
7. After isolating the damaged portion 400 kV PGCIL Bhiwani line was charged at 23:27 Hrs. 400 kV PGCIL Hisar line was charged at 23:28 Hrs and 400/220 kV ICT Bank was charged at 23:33 Hrs.

P. Details of Tests done after failure: Nil
Q. Probable cause of failure : Since the length of Dehar-Bhiwani line is 312 km, there is probability of high restriking voltage being developed due to opening of circuit breakers of these lines, which might have caused the failure of grading capacitor and PIR of subject CB. LILO of this line at PSTCL’s Rajpura s/s is under process to tackle this problem.

31. Failure of Unit 4 Y phase Tie Breaker at Raichur TPS of KPCL

A. Name of Substation : Raichur Thermal Power Station

B. Utility/Owner of substation : Raichur Thermal Power Station, Karnataka Power Corporation Limited

C. Faulty Equipment : Unit 4 Tie Breaker Y- Phase

D. Rating : 2000 A

E. Make : M/s BHEL

F. Sr. No. : 401378

G. Year of manufacturing : 1992

H. Year of commissioning : 1994 (Sept. 28th)

I. Date and time of occurrence/discovery of fault : 13.04.2016 at 21:12 hrs

J. Information received in CEA : 27.04.2016

K. Fault discovered during : Operation

L. Present condition of equipment : Breaker to be replaced by a spare BHEL make breaker.

M. Details of previous maintenance : On 30.03.2016, general maintenance works were carried out and measurement of C.B. timings, DCRM, CRM, measurement of Tan delta and capacitance of grading capacitor were carried out.

N. Details of previous failure : B-phase interrupter had failed on 28.02.2016 and the same was replaced.

O. Sequence of events/ Description of failure : On 13.04.2016, Generator Transformer-4 was replaced and Voltage was build up gradually to 15
kV on LV side and was under observation. After about 25 minutes, at 21:12 hrs, PIR and interrupter of Unit-4 Y phase tie breaker failed.

P. Details of Tests done after failure : Information not available

Q. Probable cause of failure : Ageing and surface conduction could be reasons of failure.

32. Failure of 420 kV CB at Kalapaka substation, APTRANSCO

A. Name of Substation : 400kV Substation, Kalapaka, Visakhapatnam

B. Utility/Owner of substation : APTRANSCO

C. Faulty Equipment : Circuit Breaker

D. Rating : 420kV, 2000 A

E. Make : CGL

F. Sr. No. : 30560C

G. Year of manufacturing : 2010

H. Year of commissioning : 2012 (24th April)

I. Date and time of occurrence/discovery of fault : 06-09-2016

J. Information received in CEA : 27.10.16

K. Fault discovered during : Operation

L. Present condition of equipment : Not reparable

M. Details of previous maintenance : Last maintenance done on 28.04.2016

N. Details of previous failure : No previous failures

O. Sequence of events/Description of failure : On 06.09.2016 the breaker was closed at 1635 hrs. An abnormal sound from the breaker chamber was
heard and at 1643 hrs., the Y-Phase T Chamber blasted.

P. Details of Tests done after failure : No test was possible as the Breaker had blasted.

Q. Probable cause of failure : Internal fault could be the probable cause

33. Failure of Y phase limb of 245 kV SF₆ CB of unit 8 at Bhakra Right Bank Power House of BBMB.

A. Name of Substation : 220 kV Bhakra Right Bank Power House Switchyard

B. Utility/Owner of substation : BBMB

C. Faulty Equipment : SF₆ Breaker (Y phase pole, unit 8)

D. Rating : 245 kV

E. Make : Siemens

F. Sr. No. : 2007/IND/03/3375

G. Year of manufacturing : Information not available

H. Year of commissioning : Information not available

I. Date and time of occurrence/discovery of fault : 08.12.2016 @ 14:25 hrs

K. Fault discovered during : Operation

L. Present condition of equipment : Replaced

M. Details of previous maintenance : Information not available

N. Details of previous failure : Information not available

O. Sequence of events/Description of failure : On 08.12.2016 at 14:25 hrs, in order to synchronize the Unit #8, the machine was started and excited. While building up 11 kV, LBB protection (CBRD) operated resulting in the tripping of all the breakers
of Bus-Section II along with the breakers of Bus Coupler bays of Section I & III.

On observation, the SF₆ gas pressure of Y phase pole was found to be risen from 6.1 bar to 6.6 bar; while the SF₆ pressure values of R & B phase poles were found unaltered.

P. Details of Tests done after failure

The contact resistance was found to be risen from its previous value of 39 µΩ to 48 µΩ. IR value was also found to be on the lower side.

Q. Probable cause of failure

Sufficient information such as IR value, open/close indication of CB etc not available to pin point exact cause of failure. Operation of LBB suggests that contacts of CB might have stuck up. Dynamic Contact Resistance Measurement should be carried out periodically to assess condition and alignment of the contacts.
CURRENT TRANSFORMERS

34. Failure of CT in Y phase of 230 kV Perambalur-Trichy feeder at 230 kV Perambalur substation of TANTRANSCO

<table>
<thead>
<tr>
<th>R. Name of Substation</th>
<th>: 230kV Perambalur Substation</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Utility/Owner of substation</td>
<td>: Tamil Nadu Transmission Corporation Limited</td>
</tr>
<tr>
<td>T. Faulty Equipment</td>
<td>: CT (Y-phase of Perambalur – Trichy feeder)</td>
</tr>
<tr>
<td>U. Rating</td>
<td>: 230 kV</td>
</tr>
<tr>
<td>V. Make</td>
<td>: TELK</td>
</tr>
<tr>
<td>W. Sr. No.</td>
<td>: 230116-17</td>
</tr>
<tr>
<td>X. Year of manufacturing</td>
<td>: Information not available</td>
</tr>
<tr>
<td>Y. Year of commissioning</td>
<td>: 1985 (March 28th)</td>
</tr>
<tr>
<td>Z. Date and time of occurrence/discovery of fault</td>
<td>: 24.08.2015 @ 16:52 Hrs.</td>
</tr>
<tr>
<td>AA. Information received in CEA</td>
<td>: 22.09.2015</td>
</tr>
<tr>
<td>BB. Fault discovered during</td>
<td>: Operation</td>
</tr>
<tr>
<td>CC. Present condition of equipment</td>
<td>: Replaced</td>
</tr>
<tr>
<td>DD. Details of previous maintenance</td>
<td>: Information not available</td>
</tr>
<tr>
<td>EE. Details of previous failure</td>
<td>: Information not available</td>
</tr>
<tr>
<td>FF. Sequence of events/ Description of failure</td>
<td>: On 24.08.2015 at 16:52 hrs, CT of Perambalur-Trichy feeder suddenly burst and oil spurt out with fire surrounding it and the porcelain petty coats were broken into pieces. Bus bar protection operated; 230 kV TAQA feeder tripped at both ends; HV-I, LV-I, HV-II, LV-II breakers tripped; HV-III, LV-III, Auto-III were under LC condition. No interruption to any other SS/EHT service.</td>
</tr>
</tbody>
</table>
Indication of relays: 230 kV Trichy feeder: Main-I: B, N; Main-II ‘Y’ Phase, Earth
230 kV TAQA feeder: Main-I: B, N; Main – II: Nil. Auto-I: Voltage, frequency, over flux alarm, over flux trip. Bus bar protection: Main Y phase, check Y phase

GG Details of Tests done after failure : Information not available

HH Probable cause of failure: CT had served for 30 years. Internal insulation failure due to ageing might be a reason of failure of CT.

35. **Failure of CT, PT and LA of 220 kV Cochin-Kalamassery II feeder at 220 kV Kalamassery substation of KESB**

A. Name of Substation : 220kV Kalamassery Substation
B. Utility/Owner of substation : KSEB
C. Faulty Equipment : CT, PT & LA of Cochin-Kalamassery II feeder
D. Rating : 220 kV
E. Make : 1. VITRANS (CT)
 2. TELK (PT)
 3. Information not available for LA
F. Sr. No. : Information not available
G. Year of manufacturing : Information not available
H. Year of commissioning : Information not available
I. Date and time of occurrence/discovery of fault : 19.05.2015 at 20:26 hrs
J. Information received in CEA : 14.10.2015
K. Fault discovered during : Operation
L. Present condition of equipment : Replaced
M. Details of previous maintenance : Information not available
N. Details of previous failure : Information not available
O. Sequence of events/Description of fault: On 19.05.2015 at 20:26 hrs, 220 kV CT on COKL # II feeder flashed leading to the total shutdown of 220 kV Kalamassery substation. After clearing the yard, bay supply was resumed by 21:42 hrs. On inspection, it was found that the Y phase LA had failed, PT had low capacitance value, CT had flashed over and pole of Y phase breaker was slightly damaged. The LAs of 220 kV Kalamassery substation were very old and steps were taken to replace the same. LAs of all three phases, Y phase PT & Y phase CT on COKL # II were replaced. The feeder was put in service on 22.05.2015 at 22:51 hrs.

P. Details of Tests done after failure: Capacitance of PT was measured after the failure and was found to be low.

Q. Probable cause of failure: Sufficient information is not available to draw any conclusion.

36. Failure of 230 kV Current Transformer in Manali-I feeder (R phase) at 400 kV Alamathy SubStation of TANTRANSCO.

A. Name of Substation : 400 kV Alamathy SS
B. Utility/Owner of substation : TANTRANSCO
C. Faulty Equipment : CT (R phase) of Manali-I feeder
D. Rating : 230 kV
E. Make : SCT
F. Sr. No. : 263
G. Year of manufacturing : 2012
H. Year of commissioning : 2012 (15.08.2012)
I. Date and time of occurrence/discovery of fault : 25.05.2015 at 09:09 Hrs.
J. Information received in CEA : 04.11.2015
K. Fault discovered during : Operation
L. Present condition of equipment : Damaged

M. Details of previous maintenance : CT Cleaned and Tightness Checked on 08.02.2015

N. Details of previous failure : No Previous failure

O. Sequence of events/Description of failure : On 25.05.2015 @ 09.09 hrs. heavy sound and fire was observed in CT. All 230 kV feeder tripped on Bus Bar Protection and ICT-4 & 5 tripped, Buchholz relay acted.

P. Details of Tests done after failure : CT burst, hence test could not be carried out.

Q. Probable cause of failure : Internal fault could be the reason of failure.

37. Failure of R phase CT in 230 kV Trichy-Alundur II feeder at Trichy Substation of TANTRANSCO

A. Name of Substation : 230 kV Trichy Substation

B. Utility/Owner of substation : TANTRANSCO

C. Faulty Equipment : CT (R phase) of Trichy-Alundur II feeder

D. Rating : 230 kV

E. Make : TELK

F. Sr. No. : B-230116-24

G. Year of manufacturing : Information not available

H. Year of commissioning : 1986 (March 29th)

I. Date and time of occurrence/discovery of fault : 26.09.2015 at 15.53 Hrs.

J. Information received in CEA : 09.11.2015

K. Fault discovered during : Operation

L. Present condition of equipment : Replaced with new CT
M. Details of previous maintenance : Information not available

N. Details of previous failure : Information not available

O. Sequence of events/ Description of failure : On 26.09.2015 at 15:53 hrs, R phase CT of Trichy-Alundur II feeder suddenly burst and oil spurt out with fire surrounding it and the porcelain petty coats broken into pieces.
1. 230kV Bus bar protection operated
2. Master relay of Auto Tr-I & II operated
3. 230kV Trichy-Alundur I & II feeder tripped at both end.
4. 230kV Trichy-Samayapuram feeder and 230kV Trichy-Perambalur feeders tripped at Trichy SS only.
5. 230kV HV 1 & HV 2 Breakers and 110 kV LV 1, 2 and LV 3 breakers tripped

P. Details of Tests done after failure : Since CT had burst, no test was possible.

Q. Probable cause of failure: : CT had served for 29 years. Ageing of the equipment might be a reason of failure.

38. Failure of 220 kV R phase CT at 220 kV Mehgaon Substation of MPPTCL

A. Name of Substation : 220 kV Substation, Mehgaon
B. Utility/Owner of substation : MPPTCL
C. Faulty Equipment : CT (R phase) of Auraiya feeder
D. Rating : 220 kV, 800-400/1 A
E. Make : SCT
F. Sr. No. : 2010/1921
G. Year of manufacturing : 2010
H. Year of commissioning : 2011 (March 16th)
I. Date and time of occurrence/discovery of fault : 25.07.2015 at 18.25 Hrs.
J. Information received in CEA : 16.11.2015
K. Fault discovered during : Operation
L. Present condition of equipment : Unserviceable
M. Details of previous maintenance : Megger & Tan-delta done on 26.03.2012. Cleaning, tightening done on 25.05.2015.
N. Details of previous failure : Nil
P. Details of Tests done after failure : Megger done, results were not satisfactory.
Q. Probable cause of failure : CT might have burst due to internal insulation failure

39. Failure of 220 kV B phase CT at Malanpur Substation of MPPTCL
A. Name of Substation : 220 kV Substation, Malanpur
B. Utility/Owner of substation : MPPTCL
C. Faulty Equipment : CT (B phase) of PGCIL-II feeder
D. Rating : 220 kV, 800-400/1 A
E. Make : TELK
F. Sr. No. : B230171/12
G. Year of manufacturing : 1991
H. Year of commissioning : 1993 (Sept. 9th)
I. Date and time of occurrence/discovery of fault : 18.08.2015 @ 17.25 Hrs.
J. Information received in CEA : 16.11.2015
K. Fault discovered during : Operation
L. Present condition of equipment : Replaced
M. Details of previous maintenance : Maintenance done on 12.05.2015. General cleaning, tightening & meggering carried out
N. Details of previous failure : Nil

O. Sequence of events/ Description of fault: CT burst due to internal insulation failure. The failure occurred during heavy rain fall.

P. Details of Tests done after failure : Tests after failure were not feasible as CT failed completely.

Q. Probable cause of failure : CT had served for 22 years. Internal insulation failure due to ageing might be a reason of failure.

40. Failure of R phase 220 kV CT of Sindhanur line at 220 kV Lingapura substation of KPTCL.

A. Name of Substation : 220 kV Lingapura s/s

B. Utility/Owner of substation : KPTCL

C. Faulty Equipment : Current Transformer (R phase of Sindhanur line)

D. Rating : 245 kV

E. Make : W.S.Industries (India) Ltd., Bangalore

F. Sr. No. : 881028 – ‘R’ Phase

G. Year of manufacturing : 1988

H. Year of commissioning : Information not available

I. Date and time of occurrence/discovery of fault : 15.10.2015, 17:35 Hrs.

J. Information received in CEA : 22.12.2015

K. Fault discovered during : Operation

L. Present condition of equipment : Damaged

M. Details of previous maintenance : On 21.08.2015, tightening of all clamps, tightening of CT, Marshalling box wiring connection, checking of oil level, greasing, lubrication etc.

N. Details of previous failure : NA
O. Sequence of events/
 Description of failure : Protection operated: General trip, R & Y phase trip,
 Distance – 54.13 km, R phase – 102 A, Y phase - 3772 A, B phase- 281 A; 51AX, OCR, 86X, 30G.
 Due to flashover of R ph. CT, Y ph. CT also got damaged.

P. Details of Tests done after failure : Since CT was damaged, no test was possible.

Q. Probable cause of failure : CT was manufactured in 1988. Internal insulation failure due to ageing could be the reason of failure of CT.

41. Failure of 220 kV R-phase metering CT of Hirebendegeri- I line at 220 kV Bidnal substation of KPTCL.

A. Name of Substation : 220 kV R/S Bidnal

B. Utility/Owner of substation : KPTCL

C. Faulty Equipment : 220 kV Current Transformer (R-phase of Hirebendegeri- I line)

D. Rating : 245 kV
 Rated STC:40.5 KA for 3sec
 Insulation level: 460/1050 kV
 CTR:300/1-1A, Acc Class:0.2S/0.2S,
 Burden: 5/5 ALF/ISF:<5/<5

E. Make : Mehru Electrical & Mechanical Engineers Pvt. Ltd., Bhiwadi, Rajasthan

F. Sr. No. : OC4073/1/1/12

G. Year of manufacturing : 2012

H. Year of commissioning : 2012 (May 3rd)

I. Date and time of occurrence/discovery of fault : 24.10.2015 at 14:28 Hrs.

J. Information received in CEA : 22.12.2015

K. Fault discovered during : Operation
L. Present condition of equipment : Faulty, yet to be replaced

M. Details of previous maintenance : Last maintenance was carried on 16-10-2014
1. Checked for oil leaks and oil level
2. Cleaning done.
3. Checked and tightened the Jumpers & Clamps.

N. Details of previous failure : Nil

O. Sequence of events/Description of failure : 220 kV Bidnal- Hirbendegeri- I & II lines tripped on DPR & 96 relay with loud sound in the yard. On inspection it was found that, R-phase metering CT of 220 kV Bidnal-Hirebendegeri – I had flashed over causing tripping of all 220 kV lines and 100 MVA power transformers of 1 & 2 on bus bar protection relay.

P. Details of Tests done after failure : CT was completely burnt, hence tests could not be done.

Q. Probable cause of failure : Internal insulation failure could be the reason of failure of CT. Since CT had failed within 3 years of commissioning, OEM must be consulted for analysis of fault and to rectify any design issues.

42. Failure of 220 kV CT connected to 100 MVA power transformer at Ongole substation of APTRANSCO.

A. Name of Substation : 220 kV /132/ 33 kV Ongole substation

B. Utility/Owner of substation : APTRANSCO

C. Faulty Equipment : Current Transformer (R – Phase) (HV CT of 100 MVA PTR- 1)

D. Rating : 220 kV

E. Make : TELK

F. Sr. No. : 230076-7

G. Year of manufacturing : 1980

H. Year of commissioning : 1981 (August 10th)

I. Date and time of occurrence/discovery of fault : 22.12.2015
J. Information received in CEA : 27.01.2016
K. Fault discovered during : Operation
L. Present condition of equipment : Replaced failed CT with new CT
M. Details of previous maintenance : On 07.04.2015, all connections were tightened and petty coats were cleaned. IR value primary to Earth 3.0 GΩ when tested with 5.0 kV Megger.
N. Details of previous failure : Nil
O. Sequence of events/ Description of failure : On 22.12.2015, oil gushed out from CT.
P. Details of Tests done after failure : IR primary to earth value found zero with 5.0 kV Megger.
Q. Probable cause of failure : CT had served for more than 35 years. Internal insulation failure due to ageing could be the reason of failure. Since the CT did not have test tap, it was not possible to carry out tan delta test on CT.

43. **Failure of R-phase CT of 220 kV Davanagere-2 line at 220 kV MRS Shivamogga substation of KPTCL.**

 A. Name of Substation : 220 kV MRS, Shivamogga
 B. Utility/Owner of substation : Karnataka Power Transmission Corporation Limited
 C. Faulty Equipment : 220 kV Class Current Transformer (R phase of Devanargre-2 line)
 D. Rating : 220 kV Class CT of Ratio 800/1-1-1-1-1A
 E. Make : SCT Ltd., Ghaziabad
 F. Sr. No. : 2007/1279
 G. Year of manufacturing : 2007
 H. Year of commissioning : 2007
I. Date and time of occurrence/discovery of fault: 22.02.2016 at 15:00 Hrs.

J. Information received in CEA: 18.04.2016

K. Fault discovered during: Operation

L. Present condition of equipment: Replaced with new CT

M. Details of previous maintenance: Last maintenance was carried out on 03.12.2015.

N. Details of previous failure: Nil

O. Sequence of events/Description of failure: On 22.02.2016 at 15:00 hrs, Current Transformer in R phase of Davanagere-2 line flashed over.

P. Details of Tests done after failure: Tests not done as C.T. had completely flashed over.

Q. Probable cause of failure: Internal fault could be a reason of failure.

44. Failure of B-phase CT of 220 kV Shahabad line at 220 kV Kapnoor substation of KPTCL.

A. Name of Substation: 220 kV Receiving Station, Kapnoor

B. Utility/Owner of substation: KPTCL

C. Faulty Equipment: CT (B phase of Shahabad Kapnoor line)

D. Rating: 220 kV

E. Make: Sri Venkateshwar Electicals Ltd.

F. Sr. No.: 280/1/8

G. Year of manufacturing: 2002

H. Year of commissioning: 2003

I. Date and time of occurrence/discovery of fault: 24.02.2016 at 01:20 hrs

J. Information received in CEA: 18.04.2016
K. Fault discovered during : Operation
L. Present condition of equipment : Replaced on 24.02.2016
M. Details of previous maintenance : Regular maintenance involved cleaning of bushing, checking oil level etc. On 11.12.2015, measured IR value was 8000 MΩ.
N. Details of previous failure : Nil
O. Sequence of events/Description of fault : On 24.02.2016 at 01:20 hrs, Shahabad line tripped on non-Directional earth fault relay with high set 50/51 N.
P. Details of Tests done after failure : As CT flashed over, tests could not be carried out.
Q. Probable cause of failure : Internal fault could be a reason of failure.

45. Failure of R phase CT of 220 kV Kapanoor line at 220 kV Shahabad substation of KPTCL.

A. Name of Substation : 220 kV Receiving Station, Shahabad
B. Utility/Owner of substation : KPTCL
C. Faulty Equipment : CT (R phase of Kapanoor line)
D. Rating : 220 kV, 800-600-400-200/1-1-1A
E. Make : HBB
F. Sr. No. : IB-027691
G. Year of manufacturing : 1983
H. Year of commissioning : 1984
I. Date and time of occurrence/discovery of fault : 26.02.2016 at 01:05 Hrs.
J. Information received in CEA : 18.04.2016
K. Fault discovered during : Operation
L. Present condition of equipment : Burnt completely
M. Details of previous maintenance : Tightening of nuts & bolts was done; oil level was checked and found OK.
N. Details of previous failure : Nil
O. Sequence of events/Description of failure
 On 26.02.2016 at 01:05 hrs, CT flashed. Consequent to this, HV & LV CBs of 100MVA transformer–II tripped; CBs of both I/C 220 kV lines tripped at source end i.e. at Kapnoor & Halti Gudur.

P. Details of Tests done after failure : Since CT had burnt completely, no test was possible.
Q. Probable cause of failure : CT had served for 32 years. Insulation failure due to ageing might be the reason of failure of CT.

46. Failure of B phase CT of 230 kV Tondiarpet feeder at 230 kV Manali substation of TANTRANSCO.

A. Name of Substation : 230 kV Manali SubStation
B. Utility/Owner of substation : TANTRANSCO
C. Faulty Equipment : CT (B Phase)
D. Rating : 220 kV, 1600-1200-800-600-300/1 A
 Adopted: 220 kV, 600/1 A
E. Make : Areva
F. Sr. No. : 200807105/2008
G. Year of manufacturing : 2008
H. Year of commissioning : 2009 (April 8th)
I. Date and time of occurrence/discovery of fault : 14.02.2016 at 21.06 Hrs.
K. Fault discovered during : Operation

L. Present condition of equipment : Replaced

M. Details of previous maintenance : In the last scheduled maintenance:
 a) CT Junction box checked
 b) CT Terminal connector checked

N. Details of previous failure : Nil

O. Sequence of events/Description of failure : On 14.02.16 at 21:06 hrs, heavy blast sound was observed from 230 kV yard. 230 kV busbar protection had acted with following indications:
 Main: C ph protection operated and
 Check: A- ph, C phase protection operated. On inspecting the yard, it was observed that B ph CT had burst and was emanating fire, damaging the petticoats of adjacent Y ph CT as well.
 The 110 kV Avadi and Metro water feeders were hand tripped immediately to restrict load in 110 kV bus.

P. Details of Tests done after failure : As CT burst, tests could not be carried out.

Q. Probable cause of failure : Internal fault in CT could be the reason of failure.

47. Failure of B phase CT on 220/132 kV, 100 MVA Power Transformer – 1 HV side at Yerraguntla Substation of APTRANSCO.

A. Name of Substation : 220 kV Substation, Yerraguntla

B. Utility/Owner of substation : APTRANSCO

C. Faulty Equipment : CT (B phase) at 220/132 kV 100 MVA Transformer-1 HV side

D. Rating : 220 kV

E. Make : TELK

F. Sr. No. : 230194-6

G. Year of manufacturing : 1993
H. Year of commissioning : 1993 (Oct. 24th)

I. Date and time of occurrence/discovery of fault : 21.02.2016 at 10:30 Hrs.

J. Information received in CEA : 3.5.2016

K. Fault discovered during : Operation

L. Present condition of equipment : Replaced with new CT

M. Details of previous maintenance : Information not available

N. Details of previous failure : Information not available

P. Details of Tests done after failure : No tests were possible as the CT had blasted.

Q. Probable cause of failure : Internal fault could be the reason of failure.

48. **Failure of 220 kV Y phase CT of Sewah Panipat-Thermal Ckt-I at 400 kV Panipat substation of BBMB**

A. Name of Substation : 400 kV Panipat substation

B. Utility/Owner of substation : BBMB

C. Faulty Equipment : CT (Y phase of Sewah-Thermal Ckt. I)

D. Rating : 220 kV

E. Make : NTPLC-24

F. Sr. No. : C-1036-9/1976

G. Year of manufacturing : 1976

H. Year of commissioning : 1979 (April 20th)
I. Date and time of occurrence/discovery of fault: 17.04.2016 at 18:25 hrs

J. Information received in CEA: 16.05.2016

K. Fault discovered during Operation

L. Present condition of equipment: Replaced with Heptacare make CT having ratio 1200-800-400/1-1-1-1-1 A

M. Details of previous maintenance: Last maintenance was carried out on 26.10.2015

N. Details of previous failure: Nil

O. Sequence of events/Description of failure: On 17.04.2016 at 18:25 hrs, heavy sound was heard. Upon checking it was found that CT had caught fire and had got damaged.

P. Details of Tests done after failure: Since CT had got damaged, no test was possible.

Q. Probable cause of failure: CT had served for 40 years, insulation degradation due to ageing might be the reason of failure.

49. Failure of Y-Phase CT of 220 kV VVS-1 feeder at Pendurthi S/s of APTRANSCO

A Name of Substation: 220/132 kV Pendurthi SS

B Utility/Owner of substation: APTRANSCO

C Faulty Equipment: CT of Y-phase 220 kV VVS-1 feeder

D Rating: 220 kV, Ratio: 800-600-400/1-1-1-1-1

E Make: BHEL

F Sr. No.: 2221486

G Year of manufacturing: 1991

H Year of commissioning: 1993
I Date and time of occurrence/discovery of fault : 06.06.2016
J Information received in CEA : 30.08.2016
K Fault discovered during : Operation
L Present condition of equipment : Replaced with CT of similar rating of SCT make
M Details of previous maintenance : Tan delta test, cleaning of bushings and checking of oil were done periodically.
N Details of previous failure : Nil
S. Sequence of events/Description of failure : On 6.6.2016, chattering sound and oil leakage from the Y-phase CT of 220 kV VSS-I feeder was observed.
P Details of Tests done after failure : LC was taken and tests were conducted on CT by MRT wing. Based on high tan delta value and HV-body Megger value of 1.87 Mega-ohms, CT was declared faulty.
Q Probable cause of failure : Tan delta value was found to be higher than permissible limit. Meggar value of HV-body was found to be 1.87 Mega-ohms which is very low. Internal fault due to ingress of moisture could be the reason of failure.

50. Failure of Y Phase CT of 100 MVA transformer- 2 bay at 220 kV Tubinakere substation of KPTCL.
A Name of Substation : 220/66/11 kV Tubinakere
B Utility/Owner of substation : KPTCL
C Faulty Equipment : Current Transformer of Y-ph of 100 MVA transformer-2 bay
D Rating : 220 kV, Ratio: 800-600-400-300/1 Amp
E Make : SCT
F Sr. No. : 2000/297
G Year of manufacturing : 1999
H Year of commissioning : 2001 (11th July)
I Date and time of occurrence/discovery of fault : 27.06.2016 at 0455 hrs.
J Information received in CEA : 30.08.2016
K Fault discovered during : Operation
L Present condition of equipment : Faulty
M Details of previous maintenance : 23.06.2016
N Details of previous failure : No previous failure
T. Sequence of events/Description of failure : On 27.06.16, at 0455 hrs, CT flashed over during operation
P Details of Tests done after failure : No test on Y-phase CT was possible as the CT had damaged. During testing on R-phase CT, its core-III was found saturated.
Q Probable cause of failure : Insulation failure could be the reason of failure of Y-phase CT.

51. **Failure of R & Y Phase CT of North Bus sectionaliser at 220 kV Hoody substation of KPTCL.**

A Name of Substation : 220 kV Hoody substation.
B Utility/Owner of substation : KPTCL
C Faulty Equipment : Current Transformers (R & Y-phase)
D Rating : 3000-2000 / 1-1-1-1-1 Amps
E Make : SCT Limited
F Sr. No. : 1. 2014/1809 (R-ph)
 : 2. 2014/1810 (Y-ph)
G Year of manufacturing : 2014
H Year of commissioning : 2016 (April 2nd)
I Date and time of occurrence/discovery of fault: 27.05.2016 at 0810 hrs.

J Information received in CEA: 30.08.2016

K Fault discovered during: Operation

L Present condition of equipment: All three CTs (R,Y&B phase) replaced

M Details of previous maintenance: Nil

N Details of previous failure: Nil

U. Sequence of events/Description of failure: On 27.05.2016 at 0810 hrs, CTs in R and Y phase flashed over.

P Details of Tests done after failure: No tests could be conducted as CTs were damaged.

Q Probable cause of failure: Internal fault due to insulation failure could be the reason of failure.

52. **Failure of Y-phase 220 kV CT at 220 kV Chinnakampalli substation of APTRANSCO**

A Name of Substation: 220kV Chinnakampalli substation

B Utility/Owner of substation: APTRANSCO

C Faulty Equipment: CT of Y-phase Kalikiri feeder

D Rating: 220 kV Class

E Make: M/s BHEL

F Sr. No.: Information not available

G Year of manufacturing: Information not available

H Year of commissioning: Information not available

I Date and time of occurrence/discovery of fault: 30.07.2016 at 1400 hrs.
53. Failure of R-phase 220 kV CT at 220 kV Malyalapally substation of APTRANSCO.

<table>
<thead>
<tr>
<th>A</th>
<th>Name of Substation</th>
<th>220kV Malyalapally substation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Utility/Owner of substation</td>
<td>APTRANSCO</td>
</tr>
<tr>
<td>C</td>
<td>Faulty Equipment</td>
<td>CT of R-phase NTPC-I feeder</td>
</tr>
<tr>
<td>D</td>
<td>Rating</td>
<td>220 kV Class</td>
</tr>
<tr>
<td>E</td>
<td>Make</td>
<td>M/s BHEL</td>
</tr>
<tr>
<td>F</td>
<td>Sr. No.</td>
<td>2212251</td>
</tr>
<tr>
<td>G</td>
<td>Year of manufacturing</td>
<td>1985</td>
</tr>
<tr>
<td>H</td>
<td>Year of commissioning</td>
<td>Information not available</td>
</tr>
<tr>
<td>I</td>
<td>Date and time of occurrence/discovery of fault</td>
<td>10.03.2016 at 1845 hrs.</td>
</tr>
<tr>
<td>J</td>
<td>Information received in CEA</td>
<td>26.09.2016</td>
</tr>
<tr>
<td>K</td>
<td>Fault discovered during</td>
<td>Operation</td>
</tr>
<tr>
<td>L</td>
<td>Present condition of equipment</td>
<td>Damaged</td>
</tr>
</tbody>
</table>
Details of previous maintenance: Capacitance and tan delta test were done on 05.06.16 and values of 828.19 pF and 2.61% respectively were found.

Details of previous failure: Nil

Sequence of events/Description of failure: On 10.03.2016 at 1845 hrs., CT of 220 kV NTPS-I feeder failed.

Details of Tests done after failure: CT had damaged, no test was possible.

Probable cause of failure: CT was manufactured 31 years ago. Internal fault due to ageing could be the reason of failure.

Failure of Y-phase 400 kV CT at 400 kV Mamidipally substation of APTRANSCO.

Name of Substation: 220kV Mamidipally substation
Utility/Owner of substation: APTRANSCO
Faulty Equipment: CT of Y-phase Shankarpally feeder
Rating: 400 kV; 2000-1000-500/1-1-1-1-1 A
Make: M/s TELK
Sr. No.: 24004030
Year of manufacturing: 1998
Year of commissioning: 2000
Date and time of occurrence/discovery of fault: 04.04.2016 at 0003 hrs.
Information received in CEA: 26.09.2016
Fault discovered during: Operation
Present condition of equipment: Replaced with new CT
Details of previous maintenance: Information not available
Details of previous failure : Information not available

Sequence of events/Description of failure:

Details of Tests done after failure:
Information not available

Probable cause of failure:
55. Failure of R ph 220 kV CTs at Hootagalli substation of KPTCL.

A. Name of Substation : 220kV Hootagalli substation
B. Utility/Owner of substation : KPTCL
C. Faulty Equipment : Current Transformer (R Phase)
D. Rating : 220kV,1200/800/600/400/300/1-1-1A
E. Make : TELK, Kerala
F. Sr. No. : R - Ph - 230039/14-1974,
G. Year of manufacturing : 1974
H. Year of commissioning : 2005 (14th June) (Brought from MRS, Shimoga)
I. Date and time of occurrence/discovery of fault : 22.08.2016 at 0650 hrs
J. Information received in CEA : 24.10.16
K. Fault discovered during : Operation
L. Present condition of equipment : Not reparable
M. Details of previous maintenance : Last maintenance done on 23.03.2016. Tightening of earthing connection, clamps and joints etc. and checking of oil level, etc. was done.
N. Details of previous failure : Information not available
O. Sequence of events/ Description of failure : On 22.08.2016 at 0650 hrs, 220kV Bus coupler and 220kV Basthipura No.2 lines tripped on EFR. Upon inspection it was found that the R Phase CT of 220kV Vajamangala line got flashed over and had caused damage to the Y Phase CT as well.

P. Details of Tests done after failure : Not possible as the CT had damaged

Q. Observations : NA

R. Probable cause of failure : The CT was commissioned after 31 years of manufacture and has been in service for another 11 years. Internal fault due to ageing could be a cause of failure.

56. Failure of 220 kV B- ph CT at 220 kV Jalandhar S/s, BBMB

A. Name of Substation : 220kV SRS Substation, Jalandhar

B. Utility/Owner of substation : Bhakra Beas Management Board

C. Faulty Equipment : Current Transformer (B-phase of Jamsher feeder)

D. Rating : 220kV,1200/800/600/400/300/1-1-1A

E. Make : BHEL

F. Sr. No. : 2206896

G. Year of manufacturing : Not available

H. Year of commissioning : 1988 (2nd August)

I. Date and time of occurrence/discovery of fault : 06.07.2016 at 1443 Hrs.

J. Information received in CEA : 25.10.16

K. Fault discovered during : Operation

L. Present condition of equipment : Damaged

M. Details of previous maintenance : Last quarterly and half yearly maintenance carried out on 09.04.2016 and the results were satisfactory
N. Details of previous failure : No previous failure

O. Sequence of events/
 Description of failure : On 06.07.2016 at 1443hrs, B-phase 220kV CT caught fire at the upper head terminal during normal working condition. The breaker controlling 220kV Jalandhar-Jamsher Ckt. No.1 was opened manually to disconnect it.

P. Details of Tests done after failure : Not possible as the CT was completely in burnt condition

Q. Probable cause of failure : CT had served for 28 years. Internal fault due to ageing could be a probable cause.

57. Failure of 245 kV R phase CT of Bus Coupler at 220 kV Sangrur substation of BBMB

A. Name of Substation : 220 kV Sangrur Substation

B. Utility/Owner of substation : BBMB

C. Faulty Equipment : CT (R phase)

D. Rating : 245 kV

E. Make : ASEA

F. Sr. No. : R-5974965

G. Year of manufacturing : Information not available

H. Year of commissioning : 1969

I. Date and time of occurrence/discovery of fault : 09.12.2016 @ 11:05 hrs

J. Information received in CEA : 30.12.2016

K. Fault discovered during : Operation

L. Present condition of equipment : Out of circuit

M. Details of previous maintenance : Last annual maintenance was carried out on 23.11.2016.

N. Details of previous failure : Nil

O. Sequence of events/
P. Details of Tests done after failure: Not applicable, as CT was damaged.

Q. Observations: None.

R. Probable cause of failure: The CT has been in operation for 47 years. Insulation failure due to ageing might be a reason for its failure.
58. Failure of 220 kV R phase CVT at 220 kV Kaniyambetta substation of KSEB

A. Name of Substation: 220 kV Substation, Kaniyambetta
B. Utility/Owner of substation: KSEB Ltd.
C. Faulty Equipment: CVT (R Phase of Kaniyambetta-Areakode feeder)
D. Rating: 220 kV
E. Make: CROMPTON GREAVES LTD
F. Sr. No.: 4547
G. Year of manufacturing: 1992
H. Year of commissioning: 1994
I. Date and time of occurrence/discovery of fault: 03.08.2015 at 04:11 Hrs.
J. Information received in CEA: 14.10.2015
K. Fault discovered during: Operation
L. Present condition of equipment: Replaced
M. Details of previous maintenance: Preventive maintenance work carried out on 27.07.15.
N. Details of previous failure: Nil
O. Sequence of events/Description of failure: 03.08.15, 04.11 HRS.
 The 220kV Kaniyambetta- Areakode feeder tripped at Kaniyambetta end with the following:

 Relay indications:
 Main I: V fail
 Main II: AB trip Zone 1
 Location – 10.7 Km
 Auto reclose relay 186A and 186B
Annunciations:
- VT fuse fail
- Distance Protection inoperative
- Auto reclose Lockout
- Main II relay Operated
- CB reclosed

P. Details of Tests done after failure
 - Since CVT had flashed, it was not possible to carry out any test on it after failure.

Q. Observations
 - On yard Inspection it was found that the R Phase CVT of Kaniyambetta-Areakode feeder had flashed. The flashed CVT was dismantled and new Siemens make 220 kV CVT was lifted from 220kV Areakode Substation and the same was erected and commissioned on 03.08.15 at 21.41 Hrs. CVT had served for 21 years.

R. Probable cause of failure
 - Based on the limited information provided by KSEB it is difficult to comprehend how distance relay operated with failed CVT. The meaning of ‘flashed’ is need to be elaborated by KSEB. In the absence of sufficient information, it is difficult to pin point exact cause of failure.

59. Failure of 220 kV B phase CVT of Sangrur-Hisar-I at 220 kV Sangrur substation of BBMB

A. Name of Substation
 - 220 kV Substation, BBMB Sangrur

B. Utility/Owner of substation
 - BBMB

C. Faulty Equipment
 - CVT (B phase of Sangrur-Hisar ckt-I)

D. Rating
 - 220 kV

E. Make
 - WSI

F. Sr. No.
 - B-8809790

G. Year of manufacturing
 - 1988

H. Year of commissioning
 - 1990

I. Date and time of occurrence/discovery of fault
 - 10.07.2015 at 12:15 Hrs.
J. Information received in CEA : 19.10.2015
K. Fault discovered during : Operation.
L. Present condition of equipment : Out of circuit (Not replaced)
M. Details of previous maintenance : Last scheduled maintenance was carried out on 15.04.2015 and no abnormality was found.
N. Details of previous failure : Nil
O. Sequence of events/Description of failure : On 10.07.2015 at 12.15 hrs, during routine checking of the yard it was noticed that oil was oozing out with heavy pressure from oil level indicator glass seal of CVT. Oil tank was over heated & CVT was also giving low output voltage; the CVT was taken out of circuit. The defective CVT shall be replaced with a healthy CVT or PT.
P. Details of Tests done after failure : Nil
Q. Probable cause of failure : The damage seems to have been occurred due to some internal fault of the CVT. The CVT had served for 26 years.

60. Failure of 230 kV B phase PT at 230 kV Athipattu substation of TANTRANSCO.

A. Name of Substation : 230 kV Athipattu Substation
B. Utility/Owner of substation : TANTRANSCO
C. Faulty Equipment : PT (B Phase – Main Bus I)
D. Rating : 230 kV
E. Make : SCT.
F. Sr. No. : 2010/2250
G. Year of manufacturing : 2010
H. Year of commissioning : 2012 (Oct. 9th)
I. Date and time of occurrence/discovery of fault: 07.03.2015 at 21:08 Hrs.

J. Information received in CEA: 04.11.2015

K. Fault discovered during: Operation

L. Present condition of equipment: Recommended for replacement

M. Details of previous maintenance: On 30.12.2014, secondary terminal and oil level of 230 kV Bus Coupler Breaker and Bus-I & Bus II PTs were checked and found ok.

N. Details of previous failure: No Previous Failure

O. Sequence of events/Description of failure: On 07.03.2015 at 21:08 Hrs. 230 kV Bus bar protection and Distance Protection acted. 110 kV and 33 kV feeders were hand Tripped. 230 kV PT Selector Switch of 230 kV Mosur, 230 kV NCTPS and Auto Transformer Control Panels were switched to standby bus PT. All 230 kV, 110 kV & 33 kV feeders charged one by one.

P. Details of Tests done after failure: Tan delta test conduct and values are found to be greater than 2%. Immediate replacement was recommended.

Q. Probable cause of failure: Operation of distance protection, busbar protection and high value of tan delta suggest internal insulation failure of PT.

61. Failure of 230 kV Potential Transformer of B Phase of Northern Bus at 230 kV Tondiarpet substation of TANTRANSCO.

A. Name of Substation: 230 kV Tondiarpet SS

B. Utility/Owner of substation: TANTRANSCO

C. Faulty Equipment: PT (B Phase) of Northern Bus

D. Rating: 230 kV

E. Make: CGL

F. Sr. No.: 20606
G. Year of manufacturing : 2003
H. Year of commissioning : 2007 (29.07.2007)
I. Date and time of occurrence/discovery of fault : 26.04.2015 at 16:42 Hrs.
J. Information received in CEA : 04.11.2015
K. Fault discovered during : Operation
L. Present condition of equipment : Damaged
M. Details of previous maintenance : Periodic maintenance such as checking of oil leakage, checking of cracks of insulators and cleaning of insulators was carried out.
N. Details of previous failure : No previous Failure.
O. Sequence of events/ Description of failure : On 26.04.2015 @ 16.42 Hrs. B Phase PT burst with heavy noise, caught fire and completely burnt. Severe petticoat damage found in Y phase PT.
P. Details of Tests done after failure : No test was possible as both Y and B phase PTs were completely damaged.
Q. Probable cause of failure : Internal failure in B phase PT might have increased the pressure inside PT resulting in its bursting. Flying pieces of housing of this PT damaged nearby Y phase PT.

62. Failure of B- Phase CVT of 220 kV Bus-B at 220 kV Kadakola substation of KPTCL.
A. Name of Substation : 220 kV Kadakola Receiving Station
B. Utility/Owner of substation : KPTCL
C. Faulty Equipment : CVT of 220 kV Bus- B (B- Phase)
D. Rating : a) Highest system voltage: 245 kV
 c) Equivalent Capacitance: 4400 + 10%/-5% pF
 d) BIL: 460/1050 kVp
E. Make : Crompton Greaves Ltd.
F. Sr. No. : 8138
G. Year of manufacturing : 1995
H. Year of commissioning : 1998
I. Date and time of occurrence/discovery of fault : 22.09.2015
J. Information received in CEA : 22.12.2015
K. Fault discovered during : Operation
L. Present condition of equipment : Faulty CVT was replaced with new PT of BHEL make.
M. Details of previous maintenance : Maintenance works carried out on 10.05.2013. (2-core PT of R phase replaced by 3-Core PT). IR Value & Ratio tests were conducted. Routine maintenance works carried out on 13.06.2015 and 09.01.2015
N. Details of previous failure : Nil
O. Sequence of events/Description of failure : 220 kV Bus B was provided with PT for R phase and CVTs for Y & B phases. On 22.09.2015, there was tripping of 220 kV Kanniyambetta and C.R. Nagara line-I due to loss of potential. On verification, it was found that there was no voltage in B phase. Loads were transferred to the other bus (Bus A). Ratio test was conducted and core-I was found faulty.
P. Details of Tests done after failure : IR Value test and ratio tests were conducted on 23.09.2015 & it was found that secondary voltage for all cores of CVT much less than rated value of 63.5 V.
Q. Probable cause of failure : Ratio error in CVT indicated failure of capacitor elements.

63. Failure of Y Phase CVT of 220 kV Bus-I at 400 kV Guttur substation of KPTCL.

A. Name of Substation : 400/220 kV Receiving Station, Guttur
B. Utility/Owner of substation : KPTCL
C. Faulty Equipment : Capacitive Voltage Transformer (CVT) 400 kV Bus-I Y-ph.
D. Rating : 400 kV
E. Make : WSI
F. Sr. No. : 94030146
G. Year of manufacturing : 1994
H. Year of commissioning : 2005 (June 11th) (This CVT was released from 400 kV Hoody substation)
I. Date and time of occurrence/discovery of fault : 23.09.2015 at 10.28 Hrs.
J. Information received in CEA : 22.12.2015
K. Fault discovered during : Operation
L. Present condition of equipment : Faulty
M. Details of previous maintenance : Measurement of Tan delta & capacitance measurement was carried out on 30.07.15 and results were found to be within permissible limits.
N. Details of previous failure : 11-06-2005
O. Sequence of events/Description of failure : When, 400 kV Beeranahalli- I & 400 kV side of ICT-II tripped, it was found that oil had completely oozed out from CVT.
P. Details of Tests done after failure : Meggered on 25.09.2015: IR value Phase to Ground-
Q. Probable cause of failure : Due to failure of CVT, 400 kV Beeranahalli-I line tripped; then due to overflux, 400 kV side of ICT-II also tripped. It seems there was internal fault in CVT which caused high pressure inside the tank and leakage of oil.

64. Failure of Y Phase CVT of 220 kV Haveri-II line at 400 kV Guttur substation of KPTCL.
A. Name of Substation : 400/220 kV Receiving Station, Guttur
B. Utility/Owner of substation : KPTCL
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Rating</td>
<td>245 kV</td>
</tr>
<tr>
<td>E. Make</td>
<td>WSI</td>
</tr>
<tr>
<td>F. Sr. No.</td>
<td>97111060</td>
</tr>
<tr>
<td>G. Year of manufacturing</td>
<td>1993</td>
</tr>
<tr>
<td>H. Year of commissioning</td>
<td>2004</td>
</tr>
<tr>
<td>I. Date and time of occurrence/discovery of fault</td>
<td>24.09.2015 at 04.40 Hrs.</td>
</tr>
<tr>
<td>J. Information received in CEA</td>
<td>22.12.2015</td>
</tr>
<tr>
<td>K. Fault discovered during</td>
<td>Operation</td>
</tr>
<tr>
<td>L. Present condition of equipment</td>
<td>Damaged</td>
</tr>
<tr>
<td>M. Details of previous maintenance</td>
<td>August 2015 (Details not available)</td>
</tr>
<tr>
<td>N. Details of previous failure</td>
<td>Nil</td>
</tr>
<tr>
<td>O. Sequence of events/ Description of fault</td>
<td>On 24.09.15, CVT had burst and upon inspection it was found that Oil had completely drained out from CVT and insulator stack was completely damaged.</td>
</tr>
<tr>
<td>P. Details of Tests done after failure</td>
<td>Tests after failure not possible as the CVT had burst.</td>
</tr>
<tr>
<td>Q. Probable cause of failure</td>
<td>It seems there was internal fault in CVT resulting in high pressure inside the tank which lead to bursting of CVT and spillage of oil. There is a gap of 11 years between manufacturing and commissioning. Information about condition of CVT during these 11 years is not known.</td>
</tr>
</tbody>
</table>

65. **Failure of Capacitor Voltage Transformer (B-phase) of 230 kV Arni - Sripurumbudur feeder at 230 kV Arni substation of TANTRANSCO**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Name of Substation</td>
<td>230 kV Arni Substation</td>
</tr>
<tr>
<td>B. Utility/Owner of substation</td>
<td>TANTRANSCO</td>
</tr>
</tbody>
</table>
C. Faulty Equipment : CVT (B-phase of 230 kV Arni- Sriperumbudur feeder)

D. Rating : 230 kV

E. Make : HBB

F. Sr. No. : 1B 048269

G. Year of manufacturing : 1981

H. Year of commissioning : 1983

I. Date and time of occurrence/discovery of fault : 13.12.2015 at 04:17 Hrs.

J. Information received in CEA : 04.01.2016

K. Fault discovered during : Operation

L. Present condition of equipment : Damaged

M. Details of previous maintenance : Periodical tests like meggering, measurement of capacitance & secondary voltage were carried out and results were found in order.

N. Details of previous failure : Nil

O. Sequence of events/Description of failure : On 13.12.2015 at 04:17, the line side CVT was completely damaged due to bursting.

P. Details of Tests done after failure : Since CVT had burst, no tests could be carried out.

Q. Probable cause of failure : The CVT has served more than 32 years. It might have failed due to ageing.

66. Failure of 220 kV Bus PT R phase at 220 kV Kondapuram substation of APTRANSCO.

A. Name of Substation : 220 kV Kondapuram substation

B. Utility/Owner of substation : APTRANSCO

C. Faulty Equipment : 220 kV Bus Potential Transformer (R-Phase)
D. Rating : 220 kV/√3 / 110/√3
E. Make : SCT
F. Sr. No. : 2413
G. Year of manufacturing : 2009
H. Year of commissioning : 2012
I. Date and time of occurrence/discovery of fault : 18.09.2015 at 11:03 Hrs.
J. Information received in CEA : 12.01.2016
K. Fault discovered during : Operation
L. Present condition of equipment : Blasted 220 kV PT removed from service
M. Details of previous maintenance : As per APTRANSCO schedule, detailed information is not available
N. Details of previous failure : Nil
O. Sequence of events/Description of failure : i) R-Phase 220 kV Bus PT blasted with heavy sound at 11:03 Hrs. and 220 kV Thimmapuram Circuit I & II tripped.
 ii) 220 kV Bus PT isolated from 220 kV bus by opening bus isolator at 11:15 Hrs.
P. Details of Tests done after failure : Since PT had blasted, no tests could be carried out.
Q. Probable cause of failure : Internal insulation failure could be the cause of failure.

67. Failure of 220 kV CVT on R phase of 220/66 kV, 45/60 MVA Transformer T-2 at Jagadhri substation of BBMB

A. Name of Substation : 220 kV GSS, Jagadhri.
B. Utility/Owner of substation : BBMB
C. Faulty Equipment : CVT Installed on R- Phase of 220/66 kV, 45/60 MVA, Transformer T-2
D. Rating : 245 kV
E. Make : CGL, Nasik
F. Sr. No. : 15497
G. Year of manufacturing : 2001
H. Year of commissioning : 2001 (April 9th)
I. Date and time of occurrence/discovery of fault : 08.07.2015 at 04:01 hrs
J. Information received in CEA : 12.01.2016
K. Fault discovered during : Operation
L. Present condition of equipment : Totally Damaged
M. Details of previous maintenance : Last annual maintenance done on dated 26.02.2015
N. Details of previous failure : Nil
O. Sequence of events/Description of failure : The CVT was exposed to fire with heavy blast and it was burnt to pieces. Fire was extinguished using CO₂ gas fire extinguishers and water. Following protections operated:
MICOM- P632- DIFF, TRIP- I, II, III
MICOM- P141- HS O/C, HS E/F, A-PH
LBB, Tripping Relay- 86
Facia: T/F DIFF Operated, Back protection operated.
P&T cell, BBMB Chandigarh visited Jagadhari substation and declared the CVT damaged.

P. Details of Tests done after failure : Tests could not be carried out as the CVT had blasted.

Q. Probable cause of failure : It seems CVT burst due to some internal fault in capacitor unit.
68. Failure of 400 kV B phase CVT of Nunna-Vemagiri II (APTRANSCO bay) at Nunna Substation of PGCIL

A. Name of Substation : 400 kV Nunna s/s

B. Utility/Owner of substation : APTRANSCO bays in PGCIL switchyard.

C. Faulty Equipment : CVT (B phase) in Nunna – Vemagiri –II feeder

D. Rating : 400 kV

E. Make : CGL

F. Sr. No. : 20324

G. Year of manufacturing : 2003

H. Year of commissioning : 2005

I. Date and time of occurrence/discovery of fault : 05.10.2015

J. Information received in CEA : 3.5.2016

K. Fault discovered during : Operation

L. Present condition of equipment : Replaced

M. Details of previous maintenance : Information not available

N. Details of previous failure : Information not available

O. Sequence of events/Description of failure : On 05.10.2015, drift in secondary voltage of CVT was observed and CVT was replaced with new one.

P. Details of Tests done after failure : Information not available

Q. Probable cause of failure : Internal fault in capacitors could be the reason of failure.

69. Failure of 220 kV Y phase CVT of Somayajulapalli-Dhone feeder-2 at 220 kV Somayajulapalli Switching Station of APTRANSCO.
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Name of Substation</td>
<td>: 220 kV Switching Station, Somayajulapalli.</td>
<td></td>
</tr>
<tr>
<td>B. Utility/Owner of substation</td>
<td>: APTRANSCO</td>
<td></td>
</tr>
<tr>
<td>C. Faulty Equipment</td>
<td>: CVT (Y-Phase) of 220 kV Somayajulapalli-Dhone feeder-2</td>
<td></td>
</tr>
<tr>
<td>D. Rating</td>
<td>: 220 kV</td>
<td></td>
</tr>
<tr>
<td>E. Make</td>
<td>: CGL</td>
<td></td>
</tr>
<tr>
<td>F. Sr. No.</td>
<td>: 4167</td>
<td></td>
</tr>
<tr>
<td>G. Year of manufacturing</td>
<td>: 1991</td>
<td></td>
</tr>
<tr>
<td>H. Year of commissioning</td>
<td>: 1995 (Aug. 3rd)</td>
<td></td>
</tr>
<tr>
<td>I. Date and time of occurrence/discovery of fault</td>
<td>: 19.10.2015 at 11:10 Hrs.</td>
<td></td>
</tr>
<tr>
<td>J. Information received in CEA</td>
<td>: 3.5.2016</td>
<td></td>
</tr>
<tr>
<td>K. Fault discovered during</td>
<td>: Maintenance (While carrying out quarterly maintenance of CVTs)</td>
<td></td>
</tr>
<tr>
<td>L. Present condition of equipment</td>
<td>: Information not available</td>
<td></td>
</tr>
<tr>
<td>M. Details of previous maintenance</td>
<td>: On 27.07.2015, Secondary voltages were: Y- 81.23 V (Core – 1) & 81.03 V (Core – 2) were beyond the permissible limits. Proposal for procurement of new CVT was moved.</td>
<td></td>
</tr>
<tr>
<td>N. Details of previous failure</td>
<td>: Nil</td>
<td></td>
</tr>
<tr>
<td>O. Sequence of events/Description of failure</td>
<td>: On 19.10.2015 at 11:10 hrs., during maintenance activity secondary voltages of CVT were measured and found to be low: Core- 1:19.2 V & Core- 2: 19.3 V. The CVT was declared faulty.</td>
<td></td>
</tr>
<tr>
<td>P. Details of Tests done after failure</td>
<td>: Not applicable</td>
<td></td>
</tr>
<tr>
<td>Q. Probable cause of failure</td>
<td>: Internal fault in capacitors could be the reason of failure.</td>
<td></td>
</tr>
</tbody>
</table>
70. Failure of 220 kV Y & B phase CVT at 220 kV Kodur Substation of APTRANSCO

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Name of Substation</td>
<td>220 kV Substation, Kodur</td>
</tr>
<tr>
<td>B. Utility/Owner of substation</td>
<td>APTRANSCO</td>
</tr>
<tr>
<td>C. Faulty Equipment</td>
<td>220 kV Kodur- Reniguta feeder 220 kV Capacitive Voltage Transformer-02 Nos(Y-ph & B-ph)</td>
</tr>
<tr>
<td>D. Rating</td>
<td>220 kV</td>
</tr>
<tr>
<td>E. Make</td>
<td>Trench Electric</td>
</tr>
</tbody>
</table>
| F. Sr. No. | Y-ph:947108547
B-ph:947108551 |
| G. Year of manufacturing | 1994 |
| H. Year of commissioning | 1996 (June 19th) |
| I. Date and time of occurrence/discovery of fault | 24.11.2015 at 20:10 Hrs. |
| J. Information received in CEA | 15.02.2016 |
| K. Fault discovered during | Operation |
| L. Present condition of equipment | Information not available |
| M. Details of previous maintenance | Information not available |
| N. Details of previous failure | Information not available |
| O. Sequence of events/Description of failure | Information not available |
| P. Details of Tests done after failure | Checked the Voltage Between Terminal; found zero |
| Q. Probable cause of failure | CVT had served for more than 29 years. Internal failure due to ageing could be a reason of failure. |
71. Failure of 220 kV PT (B phase of Bus II) at Thimmapuram substation of APTRANSCO

A. Name of Substation : 220 kV Substation, Thimmapuram
B. Utility/Owner of substation : APTRANSCO
C. Faulty Equipment : PT (Bus- II B-phase)
D. Rating : 220kV/√3 / 110V/√3
E. Make : SCT
F. Sr. No. : 2009/2421
G. Year of manufacturing : 2009
H. Year of commissioning : 2012
I. Date and time of occurrence/discovery of fault : 26.11.2015
J. Information received in CEA : 15.02.2016
K. Fault discovered during : Operation
L. Present condition of equipment : Replaced with new CGL make PT
M. Details of previous maintenance : Information not available
N. Details of previous failure : Nil
O. Sequence of events/Description of failure : On 26.11.2015, the PT blasted and also damaged Y phase solid core support insulators.
P. Details of Tests done after failure : Test could not be carried out as PT had blasted.
Q. Probable cause of failure : Internal fault could be the cause of failure.

72. Failure of R phase CVT of 400 kV Shantigrama line at 400 kV Nelamangala substation of KPTCL

A. Name of Substation : 400 kV receiving station, Nelamangala
B. Utility/Owner of substation : KPTCL
C. Faulty Equipment : Capacitor Voltage Transformer (R phase of 400 kV Nelamangala-Shantigram Line)

D. Rating : 400/√3kV / 110/√3V class, 4400pF

E. Make : ABB limited

F. Sr. No. : 4212032

G. Year of manufacturing : 2012 (Feb)

H. Year of commissioning : Information not available

I. Date and time of occurrence/discovery of fault : 15.12.2015 at 10:30 hrs

J. Information received in CEA : 15.02.2016

K. Fault discovered during : Monitoring

L. Present condition of equipment : Replaced with spare CVT

M. Details of previous maintenance : 17.05.2012

N. Details of previous failure : Nil

O. Sequence of events/ Description of failure : On 15.12.2015 at 10:30 hrs., during monitoring the secondary voltage of R phase of Hassan line CVT was recording 58.4 volts in place of 63.5V.

P. Details of Tests done after failure : Result of tests carried out after failure and their comparison with result of tests carried out previously on 19.05.12 are given below:
(a) Capacitance Tan Delta test

<table>
<thead>
<tr>
<th>Test Specimen</th>
<th>mode</th>
<th>Volt applied in kV</th>
<th>Capacitance in pF</th>
<th>Tan Delta in %</th>
<th>Capacitance in pF</th>
<th>Tan Delta in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Stack</td>
<td>UST 2</td>
<td>12999</td>
<td>0.17</td>
<td>13001</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>12997</td>
<td>0.09</td>
<td>13007</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>GST 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13044</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>13049</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Middle Stack</td>
<td>UST 2</td>
<td>13040</td>
<td>0.19</td>
<td>13033</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>13033</td>
<td>0.10</td>
<td>13041</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>GST 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13129</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>13137</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Bottom Stack</td>
<td>UST</td>
<td>Could not carry out the test in UST mode as the HF terminal is earthed inside the tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GST 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13062</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>13068</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Full Stack</td>
<td>UST</td>
<td>Could not Carry out the test in UST mode as the HF Terminal is Earthed inside the Tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GST 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4386.6</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>4389.8</td>
<td>0.29</td>
<td></td>
</tr>
</tbody>
</table>

(b) Voltage Ratio Test

<table>
<thead>
<tr>
<th>Test Carried out on</th>
<th>19.05.2012</th>
<th>21.12.2015 (after failure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single phase AC supply applied to Primary Stud and earth</td>
<td>Voltage Applied</td>
<td>Secondary terminal</td>
</tr>
<tr>
<td>226 V</td>
<td>1a – 1n</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>2a – 2n</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>3a – 3n</td>
<td>0.063</td>
</tr>
</tbody>
</table>

Note: a) At 226 Volts Single phase AC Supply Applied to primary Stud and earth measured voltage at secondary terminal should be 0.062 V
b) At 235 Volts Single phase AC Supply Applied to primary stud and earth, measured voltage at secondary terminal should be 0.0644 V
c) DC insulation resistance test
Applied voltage: 5 kV
Insulation Resistance: Ok
Q. Probable cause of failure : Drift in secondary voltage indicates shorting in capacitor elements. CVT was replaced with spare CVT.

73. Failure of 220 kV PT at 220/11 kV Nansuralla substation of APTRANSCO.

A. Name of Substation : 220/11kV Nansuralla Substation

B. Utility/Owner of substation : APTRANSCO.

C. Faulty Equipment : Potential Transformer

D. Rating : 220kV

E. Make : SCT

F. Sr. No. : 2009/220

G. Year of manufacturing : 2009

H. Year of commissioning : 2011

I. Date and time of occurrence/discovery of fault : 23.02.2016, 05:55 hrs.

J. Information received in CEA : 24.05.2016

K. Fault discovered during : Operation.

L. Present condition of equipment : Information not available

M. Details of previous maintenance : Maintenance was carried out as per Schedule

N. Details of previous failure : Nil

P. Details of Tests done after failure : Nil

Q. Probable cause of failure : Internal fault could be the reason of failure.

74. Failure of 220 kV R phase PT at 220/11 kV Ragulapadu substation of APTRANSCO
A. Name of Substation : 220/11kV SS, Ragulapadu
B. Utility/Owner of substation : APTRANSCO
C. Faulty Equipment : PT in R phase of Metering bay for LIS pump house
D. Rating : 220 kV
E. Make : SCT
F. Sr. No. : 2009/228
G. Year of manufacturing : 2009
H. Year of commissioning : 2011 (06.06.2011)
I. Date and time of occurrence/discovery of fault : 02.03.2016 @ 14:25 hrs
J. Information received in CEA : 24.05.2016
K. Fault discovered during : Operation
L. Present condition of equipment : Replaced
M. Details of previous maintenance : Information not available
N. Details of previous failure : Information not available
O. Sequence of events/ Description of failure : On 02.03.2016 at 14:25 hrs, R- ph metering PT for LIS pump house blasted.
P. Details of Tests done after failure : As the PT had blasted, the tests could not be carried out.
Q. Probable cause of failure : Internal fault in capacitors could be the reason of failure.
75. Failure of 220 kV Y phase CVT connected to Gooty RS feeder at 220 kV Gooty Switching Station of APTRANSCO

A. Name of Substation	220 kV Gooty RS
B. Utility/Owner of substation	APTRANSCO
C. Faulty Equipment	CVT (Y phase in Gooty RS feeder)
D. Rating	220 kV
E. Make	Trench Electric
F. Sr. No.	947108541
G. Year of manufacturing	1992
H. Year of commissioning	1992 (June 10th)
I. Date and time of occurrence/discovery of fault	15.03.2016 at 08:00 hrs
J. Information received in CEA	24.05.2016
K. Fault discovered during	Operation
L. Present condition of equipment	Information not available
M. Details of previous maintenance	Information not available
N. Details of previous failure	Information not available
O. Sequence of events/Description of failure	On 15.03.2016 at 08:00 hrs, PT/CVT fail alarm and annunciation was observed; CVT indication bulb in Y phase was not glowing. After switching off the MCB, the voltages in 3 cores were found low i.e. 15V, 30V & 5V.
P. Details of Tests done after failure	Information not available
Q. Probable cause of failure	Internal fault could be the reason of failure.

76. Failure of Y Phase PT of 220 kV Main Bus at 220kV Lingapura substation of KPTCL.
A. Name of Substation : 220 kV SRS Lingapura
B. Utility/Owner of substation : KPTCL
C. Faulty Equipment : Potential Transformer (‘Y’ph of 220 kV main bus)
D. Rating : (220 kV/√3) / (110 V/√3)
E. Make : SCT Ltd., Ghaziabad
F. Sr. No. : 2010/1789 (‘Y’ph)
G. Year of manufacturing : 2010
H. Year of commissioning : 2012 (June 28th)
I. Date and time of occurrence/discovery of fault : 07.03.2016 at 05:20 Hrs.
J. Information received in CEA : 18.04.2016
K. Fault discovered during : Operation
L. Present condition of equipment : To be replaced
M. Details of previous maintenance : Last Maintenance was carried out on 12.01.2015
N. Details of previous failure : Nil
O. Sequence of events/Description of failure : On 07.03.2016 at 05:20 hrs, PT flashed over.
P. Details of Tests done after failure : Due to Flashover, the tests could not be carried out.
Q. Probable cause of failure : Internal fault could be a reason of failure.

77. Failure of 220 kV Y Phase CVT of 150 MVA Transformer at 220 kV Peenya substation of KPTCL.

A. Name of Substation : 220 kV SRS Peenya.
B. Utility/Owner of substation : KPTCL
C. Faulty Equipment : Current Transformer (CT)
D. Rating : 220 kV
E. Make : Areva T & D Instrument T/F India Pvt. Ltd.
F. Sr. No. : 20051133/2005
G. Year of manufacturing : 2005
H. Year of commissioning : 2006
I. Date and time of occurrence/discovery of fault : 27.09.2015 at 04.22 Hrs.
J. Information received in CEA : 22.12.2015
K. Fault discovered during : Operation
L. Present condition of equipment : Replaced
M. Details of previous maintenance : 19.07.2015
N. Details of previous failure : Nil
O. Sequence of events/Description of failure : At 04:22 Hrs. 220 kV “Y” ph. CT of 150 MVA Power Transformer No-3 flashed over with heavy sound and fire, power transformer tripped on Differential, HV REF.

P. Details of Tests done after failure : Tests after failure not possible as the CT had burst.

Q. Probable cause of failure : Internal fault could be the cause of failure.

78. Failure of Y Phase PT of 220 KV BUS –A at 220 kV Haveri substation of KPTCL.

A Name of Substation : 220kV R/s, Haveri
B Utility/Owner of substation : KPTCL
C Faulty Equipment : PT of Bus ‘A’
D Rating : 220 kV Class
E Make : SCT
F Sr. No. : 2010/1780
G Year of manufacturing : 2010
H Year of commissioning : 2011 (6th April)
I Date and time of occurrence/discovery of fault : 02.04.2016 at 1812 hrs.
J Information received in CEA : 30.08.2016
K Fault discovered during : Operation
L Present condition of equipment : Damaged
M Details of previous maintenance : Last maintenance carried out on 20.10.2015
N Details of previous failure : None
O Sequence of events/Description of failure : On 02.04.2016 at 1812 hrs., PT of 220 kV Bus ‘B’ failed & flashed over. The windings were completely burnt out.
P Details of Tests done after failure : No tests could be conducted as PT had damaged.
Q Probable cause of failure : Internal fault due to insulation failure could be the reason of failure.

79. Failure of B Phase CVT of 400 KV Talaguppa line at 400 kV Nelamangala substation of KPTCL.

A Name of Substation : Nelamangala
B Utility/Owner of substation : KPTCL
C Faulty Equipment : CVT for ‘B’phase of Nelamangala- Talaguppa Line
D Rating : 400kV/√3 / 110/√3 V, Single Phase, 8800 pF
E Make : M/s W.S.Industries
F Sr. No. : 20000707
G Year of manufacturing : 2000
H Year of commissioning : Information not available
I Date and time of occurrence/discovery of fault : 12.05.2016 at 0622 hrs.
J Information received in CEA : 30.08.2016
K Fault discovered during : Operation
L Present condition of equipment : Replaced with spare CVT on 17.05.16
M Details of previous maintenance : On 03.05.2016, CVT secondary voltage was measured and found within limit.
N Details of previous failure : None
O Sequence of events/Description of failure : On 12.05.2016 at 0621 hrs 400 kV Nelamangala-Talaguppa line tripped on fault with overvoltage relay indication and Direct Trip sent to Talaguppa end. Overvoltage relay recording was observed. Value was 126 V secondary for Ux measurement. However, bus voltage was 390 kV. On field inspection, it was found that oil was spilling from ‘B’ph CVT. Later the faulty CVT was disconnected from the power circuit and Bus A CVT secondary voltage was extended for protection and metering of Nelamangala-Talaguppa line and line was taken into service on 12.05.2016 at 1519 hrs.

P Details of Tests done after failure : Carried out Capacitance, tan delta and Ratio test. Results are as follows:

Capacitance and Tan delta test:

<table>
<thead>
<tr>
<th>Test Specimen</th>
<th>Mode</th>
<th>Volt applied in kV</th>
<th>Capacitance in pF</th>
<th>Tan Delta in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Stack</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UST</td>
<td>2</td>
<td>26045</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>26046</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>GST</td>
<td>2</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

134
Voltage ratio test:

<table>
<thead>
<tr>
<th>Voltage Applied</th>
<th>Secondary Terminal</th>
<th>Measured Voltage in V</th>
</tr>
</thead>
<tbody>
<tr>
<td>240.9 Volts</td>
<td>1a–1n</td>
<td>0.094</td>
</tr>
<tr>
<td></td>
<td>2a–2n</td>
<td>0.094</td>
</tr>
<tr>
<td></td>
<td>3a–3n</td>
<td>0.094</td>
</tr>
</tbody>
</table>

Note: At 240.9 Volts Single Phase AC supply applied to Primary Stud and earth measured voltage at secondary terminal should be 0.066 V

DC insulation resistance test:
Applied voltage: 5 kV
Insulation resistance: OK

Probable cause of failure: High values of tan delta indicates deteriorated insulation and high secondary voltage indicates failure of capacitive elements. Higher voltage on CVT secondary caused the operation of overvoltage relay resulting in tripping of the line.

80. Failure of 220 kV R Phase PT of 220 kV Bus – A at 220 kV Chikkodi substation of KPTCL.

A. Name of Substation: 220 kV R/S Chikkodi
B. Utility/Owner of substation: KPTCL
C. Faulty Equipment: PT (Bus- A, R-phase)

D. Rating: 220 kV/√3 / 110V /√3

E. Make: SCT

F. Sr. No.: 2010/1810

G. Year of manufacturing: 2010

H. Year of commissioning: 2011 (December 17th)

I. Date and time of occurrence/discovery of fault: 13.10.2015 at 00:35 Hrs.

J. Information received in CEA: 22.12.2015

K. Fault discovered during: Operation

L. Present condition of equipment: Not replaced

M. Details of previous maintenance: On 29.08.2015, cleaning, greasing & nut bolt tightening of all GOS coming under Bus A&B cleaning & tightening of PT connection was carried out. Oil level & leakage in PTs of Bus A&B was checked and found OK.

N. Details of previous failure: Nil

O. Sequence of events/Description of failure: On 13.10.2015, the following events occurred.

00:30hrs- The station was in normal condition, the 220 kV BUS PT-1 & II were connected to parallel buses A & B. Both bus PT were in closed condition. Both Bus A & B were charged by MSETCL supply when bus coupler was closed.

00:35 hrs- The R phase PT of 220 kV BUS A blasted & also burnt the joint of 220 kV bus coupler GOS at 00:35 hrs. No relay operated & CBs of interstate lines at 220 kV R/S Chikkodi end did not trip, but CB tripped at both 400 kV Talandagi station & 220 kV Mudashinge station end. 220 kV Mudashinge: Distance relay operated, dist.: 73 kms, Fault loop: R ph. pickup, Tr- Z2, & fault current: I1-2.2 kA, I2-0.42 kA & I3-0.73 kA.
400 kV Talandagi stn.: Distance relay operated, dist.: nil, Fault loop: L1, Tr- Z2, & fault current: I1-3.067 kA, I2-0.404 kA & I3-0.869 kA. At the same time, the R ph. 220 kV line wave trap joint burnt at 400 kV Talandagi stn.

00:37 hrs - The both CB of 220 kV Talandagi & Mudashinge hand tripped at 220 kV Chikkodi end.

00:37 hrs- The both CB of 220 kV Belgaum I & II lines were hand tripped at 220 kV Chikkodi end. The relays & CBs are not operated at 220 kV Begaum end due to source of power supply at Chikodi end.

00:38 hrs- The HV & LV CB of both 100 MVA Power transformer – I&II Hand Tripped.

01:10 hrs- Isolated the Blasted PT by Opening PT BUS A GOS.

P. Details of Tests done after failure : Tests after failure were not possible as PT had blasted.

Q. Probable cause of failure : Internal insulation failure could be the reason of failure of PT.

81. **Failure of 220 kV PT in 220kV Narendra substation of KPTCL**

A. Name of Substation : 220kV Narendra

B. Utility/Owner of substation : KPTCL

C. Faulty Equipment : Potential Transformer (R-Phase, Bus-A)

D. Rating : 220kV voltage class

E. Make : SCT

F. Sr. No. : 2012/789

G. Year of manufacturing : 2012

H. Year of commissioning : 2014
I. Date and time of occurrence/discovery of fault: 23.07.2016 at 1250 Hrs.

J. Information received in CEA: 28.11.16

K. Fault discovered during Operation

L. Present condition of equipment: PT is to be replaced

M. Details of previous maintenance:
 1. All jumps and Clamps tightened
 2. No looseness of earth connection was found.
 3. No cracks on insulator was found & the insulator was cleaned.

N. Details of previous failure: No previous failures

O. Sequence of events/
 Description of failure: On 23.07.16, at 1250 hrs, fire and smoke was observed in the PT. Oil was oozing out.
 PT Selector switch was changed to Bus-B for all 220kV Lines and Transformers.

P. Details of Tests done after failure: Megger test was done between primary and ground.
 IR value was found to be zero.

Q. Probable cause of failure: Internal fault due to insulation failure could be the reason of failure of PT.

82. Failure of 220 kV PT at 220 kV Settypalli substation of APTRANSCO.

A Name of Substation: 220kV Settypalli substation

B Utility/Owner of substation: APTRANSCO

C Faulty Equipment: PT

D Rating: 220 kV Class

E Make: SCT

F Sr. No.: 2009/493

G Year of manufacturing: 2009

H Year of commissioning: 2011 (18th November)
Date and time of occurrence/discovery of fault: 01.08.2016 at 1018 hrs.

Information received in CEA: 23.09.2016

Fault discovered during: Operation

Present condition of equipment: Damaged

Details of previous maintenance: Regularly maintained as per schedule, detailed information not available.

Details of previous failure: None

Sequence of events/Description of failure: On 01.08.2016 at 1018 hrs., 220 kV class PT failed.

Details of Tests done after failure: None

Probable cause of failure: Internal fault could be the reason of failure.

83. Failure of R Phase PT of 220 kV Bus-1 at 220 kV Karwar substation of KPTCL.

Name of Substation: 220 kV Karwar S/s

Utility/Owner of substation: KPTCL

Faulty Equipment: PT of 220 kV Bus 1

Rating: 220 kV

Make: SCT Limited

Sr. No.: 2010/1774

Year of manufacturing: 2010

Year of commissioning: 2011 (18th June)

Date and time of occurrence/discovery of fault: 12.07.2016 at 1140 Hrs.

Information received in CEA: 30.08.2016
K. Fault discovered during: Operation

L. Present condition of equipment: Damaged

M. Details of previous maintenance: Last maintenance was carried out on 04.08.2016 (PT bushing was cleaned; tightness of the clamp was checked and found OK; oil level was checked and found OK; no leakages were found)

N. Details of previous failure: Nil

V. Sequence of events/Description of failure: On 12.07.16 at 1140 hrs, 220 kV Bus-1 ‘R’ Phase PT flashed over and failed causing dead bus at Karwar, Kadra and Kodasalli substations.

P. Details of Tests done after failure: As PT had flashed over and windings were completely burnt out, no tests could be conducted.

Q. Probable cause of failure: Insulation failure might be the reason.

84. Failure of B Phase PT of 220 kV Bus- B at 220 kV Chikkodi substation of KPTCL.

A. Name of Substation: Chikkodi substation

B. Utility/Owner of substation: Karnataka Power Transmission Corporation Ltd.(KPTCL)

C. Faulty Equipment: 220 kV PT (Bus-B, B-phase)

D. Rating: 220 kV/√3 / 110 V/√3

E. Make: SCT Ltd.

F. Sr. No.: 2010/1811

G. Year of manufacturing: 2010

H. Year of commissioning: 2010 (16th June)

I. Date and time of occurrence/discovery of fault: 01.07.2016 at 0306 hrs

J. Information received in CEA: 30.08.2016

K. Fault discovered during: Operation

L. Present condition of equipment: All three nos. SCT make PTs were replaced by 220 kV PTs of CGL make
M Details of previous maintenance: On 21.01.2016, shutdown of both 220 kV Bus A & B was taken. Cleaning, greasing & nut bolt tightening of PT connections was done. Oil level was checked and no leakage was found in PTs of either bus.

N Details of previous failure: None

W. Sequence of events/Description of failure: Bus A & B are connected separately to KPTCL & MSETCL supply respectively. Prior to fault, both PT bus GOS were in closed condition. The B phase PT of 220 kV BUS B blasted at 0306 hrs while in operation.

P Details of Tests done after failure: As PT blasted, no tests could be conducted

Q Probable cause of failure: Insulation failure might be the reason.

85. Failure of 220 kV PT at 220/11 kV Lakasagaram substation of APTRANCO

A. Name of Substation: 220 kV Lakasagaram substation

B. Utility/Owner of substation: APTRANSCO

C. Faulty Equipment: Potential Transformer

D. Rating: 220 kV

E. Make: SCT

F. Sr. No.: 2009/217

G. Year of manufacturing: 2009

H. Year of commissioning: 2011

I. Date and time of occurrence/discovery of fault: 13.05.2016 at 08:50 hrs

J. Information received in CEA: 25.07.2016

K. Fault discovered during: Operation
L. Present condition of equipment : Totally damaged

M. Details of previous maintenance : Regular maintenance carried out as per schedule

N. Details of previous failure : Nil

O. Sequence of events/ Description of failure : On 13.05.2016 at 08:50 hrs, PT burst.

P. Details of Tests done after failure : None as PT had damaged completely

Q. Probable cause of failure : PT might have failed due to internal fault

86. **Failure of B Phase PT of 220 KV BUS –B at 220 kV Haveri substation of KPTCL.**

A. Name of Substation : 220 kV Haveri substation

B. Utility/Owner of substation : KPTCL

C. Faulty Equipment : PT of Bus ‘B’

D. Rating : 220 kV Class

E. Make : SCT

F. Sr. No. : 2010/1782

G. Year of manufacturing : 2010

H. Year of commissioning : 2011 (6th April)

I. Date and time of occurrence/discovery of fault : 30.05.2016 at 2335 hrs.

J. Information received in CEA : 30.08.2016

K. Fault discovered during : Operation

L. Present condition of equipment : Damaged

M. Details of previous maintenance : Last maintenance carried out on 20.02.2016
Details of previous failure : None

Sequence of events/ Description of failure : On 30.05.2016 at 2335 hrs, PT of 220 kV Bus ‘B’ failed & flashed over. The windings were completely burnt out.

Details of Tests done after failure : No tests could be conducted as PT was damaged.

Probable cause of failure : Internal fault due to insulation failure could be the reason of failure.

87. Failure of R-ph CVT at 400 kV Indira Sagar power station of NHDC Ltd.

Name of Substation : 400 kV Indira Sagar Power Station

Utility/Owner of substation : NHDC Limited

Faulty Equipment : CVT(R-phase) of Bus B

Rating : 400 kV

Make : CGL

Sr. No. : 19452

Year of manufacturing : 2003

Year of commissioning : 2003

Date and time of occurrence/discovery of fault : 18.05.2016 at 0219 Hrs.

Information received in CEA : 20.06.16

Fault discovered during : Operation

Present condition of equipment : Damaged

Details of previous maintenance : Last capacitance test & ten delta test was carried out on 16.01.11.

Details of previous failure : Information not available
O. Sequence of events/Description of failure

On 18.05.2016 at 0219 hrs., CVT (R-phase) of Bus # B blasted and all 4 feeders and 2 running units got tripped.

P. Details of Tests done after failure

No test was possible as CVT had blasted.

Q. Probable cause of failure

Internal fault could be the probable cause of failure. However, since last testing for evaluation of the health of CVT was done in 2011 as per the information provided by NHDC, it is difficult to ascertain the cause of failure.
SURGE ARRESTERS / LIGHTNING ARRESTERS

88. Failure of 198 kV Y-Phase L.A. of 220 kV Ch. Dadri- Panipat (S/C) at 220 kV Ch. Dadri substation of BBMB.

<table>
<thead>
<tr>
<th>A. Name of Substation</th>
<th>: 220 kV GSS, Ch. Dadri.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Utility/Owner of substation</td>
<td>: BBMB</td>
</tr>
<tr>
<td>C. Faulty Equipment</td>
<td>: L.A. (Y-Phase of 220 kV Ch. Dadri- Panipat)</td>
</tr>
<tr>
<td>D. Rating</td>
<td>: 198 kV</td>
</tr>
<tr>
<td>E. Make</td>
<td>: CGL</td>
</tr>
<tr>
<td>F. Sr. No.</td>
<td>: 51911</td>
</tr>
<tr>
<td>G. Year of manufacturing</td>
<td>: 2006</td>
</tr>
<tr>
<td>H. Year of commissioning</td>
<td>: 2006 (Sept. 20th)</td>
</tr>
<tr>
<td>I. Date and time of occurrence/discovery of fault</td>
<td>: 19.11.2015 at 18:05 Hrs.</td>
</tr>
<tr>
<td>J. Information received in CEA</td>
<td>: 03.02.2016</td>
</tr>
<tr>
<td>K. Fault discovered during</td>
<td>: Operation</td>
</tr>
<tr>
<td>L. Present condition of equipment</td>
<td>: Replaced with New One</td>
</tr>
<tr>
<td>M. Details of previous maintenance</td>
<td>: IR value- Top to Earth = 13Kx5MΩ measured on 19.11.2015 during S/Down. Leakage current = 591 micro Amp. measured on 29.10.2015.</td>
</tr>
<tr>
<td>N. Details of previous failure</td>
<td>: Nil</td>
</tr>
<tr>
<td>O. Sequence of events/ Description of failure</td>
<td>: Equipment damaged on 19.11.2015 at 18:05 Hrs. due to line fault.</td>
</tr>
<tr>
<td>P. Details of Tests done after failure</td>
<td>: No test was done as LA was flashed.</td>
</tr>
<tr>
<td>Q. Observations</td>
<td>: No information has been provided regarding what kind of line fault had occurred. Values of IR measured on 19.11.2015 are difficult to comprehend and it is also not clear whether value</td>
</tr>
</tbody>
</table>

145
of leakage current (591 micro Amp) is total current or resistive current. If 591 micro amp measured on 29.10.15 is resistive current then LA should have been replaced immediately.

89. Failure of 230 kV LA (R phase) at 400 kV Alamathy substation of TANTRANSCO.

A. Name of Substation : 400 kV Alamathy substation

B. Utility/Owner of substation : TANTRANSCO

C. Faulty Equipment : LA (R Phase) of 400/230 kV Auto Transformer ICT-4

D. Rating : 230 kV

E. Make : M/s. CGL

F. Sr. No. : 27203

G. Year of manufacturing : 2003

H. Year of commissioning : 2006 (July 28th)

I. Date and time of occurrence/discovery of fault : 11.03.15 at 13:58 Hrs.

J. Information received in CEA : 04.11.2015

K. Fault discovered during : Operation

L. Present condition of equipment : Damaged

M. Details of previous maintenance : Each Stack IR value measured and tightness checked on 10.03.2015 and found normal.

N. Details of previous failure : No Previous Failure

O. Sequence of events/Description of failure : On 11.03.2015 at 13.58 hrs., heavy smoke and sound was observed in LA and Differential relay 87T1, Distance relay 21Y, Master Trip relay 86A & 86B of 400/230kV Auto transformer (ICT#4) acted.

P. Details of Tests done after failure : Insulator flashed out on the 2 stacks, hence test could not be carried out.

Q. Probable cause of failure : LA might have failed due to internal fault.
90. Failure of B Phase LA of 220kV Ponda-1 line at 220kV Ambewadi substation of KPTCL.

A. Name of Substation : 220 kV R/S, Ambewadi
B. Utility/Owner of substation : KPTCL
C. Faulty Equipment : LA (B phase) of Ponda-1 line
D. Rating : 220 kV
E. Make : WS Industries Ltd.
F. Sr. No. : A-90351, B-90352, C-90353 (Top, Middle, Bottom stack)
G. Year of manufacturing : 1990
H. Year of commissioning : 1992
I. Date and time of occurrence/discovery of fault : 17.12.2015 at 18:20 Hrs.
J. Information received in CEA : 18.04.2016
K. Fault discovered during : Operation
L. Present condition of equipment : Replaced by new LA on 18.12.2015
M. Details of previous maintenance : Last quarterly maintenance was carried out on 31.05.2015.
N. Details of previous failure : Nil
O. Sequence of events/Description of failure : On 17.12.2015 at 18:20 hrs, 220 kV Ponda-1 line tripped on Distance protection relay.
P. Details of Tests done after failure : LA broken into pieces; hence test was not possible.
Q. Probable cause of failure : LA had served for more than 33 years. Insulation failure due to ageing could be a reason of failure.

91. Failure of B-phase LA of 220 kV Harthi line at 220 kV Bidnal substation of KPTCL.

A. Name of Substation : 220 kV Receiving Station, Bidnal
B. Utility/Owner of substation : KPTCL

C. Faulty Equipment : 220 kV LA (B phase) of Harthi-1 line

D. Rating : Voltage class: 198 kV, Type: Zinc oxide, Normal Discharge current: 10kA, LD class 3, Pr Relief current: 40 kA, MCOV:168 kV (rms)

E. Make : CGL

F. Sr. No. : 55972

G. Year of manufacturing : 2006

H. Year of commissioning : 2008 (March 12th)

I. Date and time of occurrence/discovery of fault : 27.12.2015 at 23:47 Hrs.

J. Information received in CEA : 18.04.2016

K. Fault discovered during : Operation

L. Present condition of equipment : Damaged

M. Details of previous maintenance : Quarterly maintenance was carried out on 21.05.2015; LA stacks were cleaned, no cracks were found, earth connections were checked at LA. Electrode and line jump connections were checked for leakage current; surge counter was checked and found normal.

N. Details of previous failure : Nil

O. Sequence of events/Description of failure : On 27.12.2015 at 23:47 hrs, 220 kV Bidnal- Harthi 1 line tripped on Distance Protection Relay. On inspection it was found that B-phase LA of 220kV Bidnal- Harthi 1 had flashed over causing tripping of the line.

P. Details of Tests done after failure : LA was damaged and hence no tests could be carried out.
Q. Probable cause of failure: Insulation failure could be a reason of failure of LA.

92. Failure of B Phase LA of 220 kV Shimoga line at 220 kV Honnali substation of KPTCL.

A. Name of Substation 220 kV R/S Honnali
B. Utility/Owner of substation KPTCL
C. Faulty Equipment LA (B Phase of 220 kV Shimoga line)
D. Rating 220 kV
E. Make Crompton Greaves Limited
F. Sr. No. 15157
G. Year of manufacturing 2002
H. Year of commissioning 2003 (20th October)
I. Date and time of occurrence/discovery of fault 06.03.2016 at 17:05 Hrs.
J. Information received in CEA 18.04.2016
K. Fault discovered during Operation
L. Present condition of equipment To be replaced
M. Details of previous maintenance On 19.01.2016, scheduled maintenance was carried out:
 1. Cleaned LA Stacks & no cracks were found
 2. Checked earth connections.
N. Details of previous failure Nil
O. Sequence of events/
 Description of failure On 06.03.2015 at 17:05 Hrs. 220kV Shimoga line tripped on distance relay: distance 2.7 km, B-Ph. to N, IL1=1.06kA, IL2=0.70kA, IL3=5.13kA. On inspection, it was found that B-Phase LA had flashed over.
P. Details of Tests done after failure: LCM test on 220 kV Shimoga line LA on 28.08.2015 and values of leakage current were found to be within limits.

Q. Probable cause of failure: Internal fault could be a reason of failure.

A. Name of Substation: 220 kV Versova substation
B. Utility/Owner of substation: Reliance Infrastructure – Mumbai Transmission
C. Faulty Equipment: Lightening Arrester (Y-phase)
D. Rating: 220 kV Class
E. Make: CGL
F. Sr. No.: 35971
G. Year of manufacturing: 2004
H. Year of commissioning: 2005 (June 30th)
I. Date and time of occurrence/discovery of fault: 30.11.2015 at 13:22 Hrs.
J. Information received in CEA: 09.12.2015
K. Fault discovered during: Operation
L. Present condition of equipment: Y phase LA disconnected & the transformer was taken in service after isolating failed LA.
M. Details of previous maintenance: Last Annual Maintenance done on 18/03/2015.
 | THRC results |
 | 16.01.2015 | 37 Micro Amps |
 | 08.01.2014 | 53 Micro Amps |
N. Details of previous failure: Nil
P. Details of Tests done after failure: Visual & Physical Inspection Done during which Lightning Arrester was found to be damaged.

Q. Probable cause of failure: Internal insulation failure.

94. Failure of 216 kV, 10 kA R Phase Surge Arrester of 220 kV Dabespet line at 400kV Nelamanagla Substation of KPTCL

<table>
<thead>
<tr>
<th>A. Name of Substation</th>
<th>400kV Receiving Station, Nelamangala</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Utility/Owner of substation</td>
<td>KPTCL</td>
</tr>
<tr>
<td>C. Faulty Equipment</td>
<td>216 kV Surge Arrester (220 kV Dabespet line)</td>
</tr>
<tr>
<td>D. Rating</td>
<td>216 kV, 10 kA</td>
</tr>
<tr>
<td>E. Make</td>
<td>CGL</td>
</tr>
<tr>
<td>F. Sr. No.</td>
<td>5129</td>
</tr>
<tr>
<td>G. Year of manufacturing</td>
<td>2000</td>
</tr>
<tr>
<td>H. Year of commissioning</td>
<td>2001</td>
</tr>
<tr>
<td>I. Date and time of occurrence/discovery of fault</td>
<td>28.12.2015 at 12.18 hrs.</td>
</tr>
<tr>
<td>J. Information received in CEA</td>
<td>15.02.2016</td>
</tr>
<tr>
<td>K. Fault discovered during</td>
<td>Operation</td>
</tr>
<tr>
<td>L. Present condition of equipment</td>
<td>Replaced</td>
</tr>
<tr>
<td>M. Details of previous maintenance</td>
<td>Carried out 3rd Harmonic Resistive leakage current on 06.08.2015 and value was 13.2 Micro Amps.</td>
</tr>
<tr>
<td>N. Details of previous failure</td>
<td>Nil</td>
</tr>
<tr>
<td>O. Sequence of events/Description of failure</td>
<td>Line tripped on Fault with big sound in the yard. On Inspection, it was found that the 220 kV Dabespet line R-Phase Surge Arrester had flashed over.</td>
</tr>
</tbody>
</table>
P. Details of Tests done after failure: As SA had flashed over, the tests could not be carried out.

Q. Probable cause of failure: Internal fault could be the cause of failure.

95. Failure of 220 kV R phase LA of 220/66 kV, 100 MVA Transformer I at 220 kV Sagapara substation of GETCO

A. Name of Substation: 220 kV Sagapara s/s

B. Utility/Owner of substation: GETCO

C. Faulty Equipment: LA (R-ph) of 220/66 kV, 100 MVA Transformer-I

D. Rating: 220 kV

E. Make: CGL

F. Sr. No.: 9706046

G. Year of manufacturing: 1997

H. Year of commissioning: 1999 (Sept. 13th)

I. Date and time of occurrence/discovery of fault: 19.12.2015 at 19:15 hrs

J. Information received in CEA: 04.01.2016

K. Fault discovered during: Operation

L. Present condition of equipment: Replaced

M. Details of previous maintenance:

1. LCM value

<table>
<thead>
<tr>
<th>Date</th>
<th>I_{leakage} (µA)</th>
<th>I_{total} (µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.03.13</td>
<td>36</td>
<td>890</td>
</tr>
<tr>
<td>13.03.14</td>
<td>148</td>
<td>1860</td>
</tr>
</tbody>
</table>

2. On 19.12.2015, porcelain was cleaned by cloth & clamp connector tightening work was carried out. Earthing connection were also checked and found ok.
N. Details of previous failure : Nil

O. Sequence of events/ Description of failure
 On 19.12.2015 at 19:15 hrs, 220 kV class R phase LA of 220/66 kV, 100 MVA transformer no. 1 failed with blast and smoke. 100 MVA trf.-I tripped on differential only. After physical observation, it was found that 220 kV R phase LA flashed and its bottom, middle and top part had carbonized and its cable connection to surge counter opened out from LA bottom.

P. Details of Tests done after failure : Tests after failure were not possible as the LA had blasted.

Q. Probable cause of failure : Internal insulation failure could be the cause of failure.

96. Failure of 390 kV LA of 400 kV Thiruvalam-I feeder (Y phase) at Alamathy substation of TANTRANSCO

A. Name of Substation : 400/230-110 kV ALAMATHY SS

B. Utility/Owner of substation : TANTRANSCO

C. Faulty Equipment : LA in Y phase of Thiruvalam-I Feeder

D. Rating : 390kV

E. Make : CGL

F. Sr. No. : 26184

G. Year of manufacturing : 2003

H. Year of commissioning : 2006

J. Information received in CEA : 11.01.2016

K. Fault discovered during : Operation

L. Present condition of equipment : Replaced
M. Details of previous maintenance:
Leaking Current Monitoring for third harmonic Current measurement was conducted on 05.06.2015 by M/s. PGCIL and results were found normal.

N. Details of previous failure:
Nil

O. Sequence of events/Description of failure:
13.12.2015 at 22:42 Hrs, heavy sound and fire was observed in LA. ARC operated, I > 1 trip, SOTF, ABC phase TRIP acted in 400 kV Thiruvalam-I feeder and 400 kV Thiruvalam tie breaker also tripped.

P. Details of Tests done after failure:
LA flashed over and burst, hence no test not could be carried out.

Q. Probable cause of failure:
Internal insulation failure could be cause of failure.

97. Failure of 230 kV ‘B’ phase Lightning Arrester at 230 kV Cuddalore substation of TANTRANSCO

A. Name of Substation:
Cuddalore substation

B. Utility/Owner of substation:
TANTRANSCO

C. Faulty Equipment:
LA (B-ph, HV side of 100 MVA Auto Transformer-I)

D. Rating:
230 kV

E. Make:
CGL

F. Sr. No.:
9509115

G. Year of manufacturing:
1996

H. Year of commissioning:
1998

I. Date and time of occurrence/discovery of fault:
16.06.2016 at 17:37 hrs

J. Information received in:
06.07.2016 CEA

K. Fault discovered during:
Operation

L. Present condition of equipment:
Not repairable
M. Details of previous maintenance : Routine maintenance was done periodically.

N. Details of previous failure : No previous failures.

O. Sequence of events/Description of failure : On 16.06.2016, at 17:37 hrs, the 230 kV LA burst while in service.

P. Details of Tests done after failure : Not possible as LA was burst.

Q. Probable cause of failure : LA might have failed due to internal fault.

98. Failure of 230 kV LA at 230 kV Korattur substation of TANTRANSCO

A. Name of Substation : 230 kV Korattur substation

B. Utility/Owner of substation : TANTRANSCO

C. Faulty Equipment : Lightning Arrestor

D. Rating : LA (Y-ph HV side of 100 MVA Auto transformer-II)

E. Make : CGL

F. Sr. No. : 4865

G. Year of manufacturing : 1999

H. Year of commissioning : 2000

I. Date and time of occurrence/discovery of fault : 19.06.2016 at 15:33 hrs

J. Information received in : 16.08.2016

K. Fault discovered during : Operation

L. Present condition of equipment : Not repairable

M. Details of previous maintenance : On 19.06.2016 general maintenance work was carried out. Hipot test was conducted on 10.07.2015 by Hot Lines and LA was reported healthy.
N. Details of previous failure : None

O. Sequence of events/Description of failure : On 19.06.2016 at 15:33 hrs, heavy dip in voltage was observed and sound was heard in the yard. Upon inspecting the relay panel, it was observed that 100 MVA Auto. Tr. No. II had tripped in the differential protection. Upon inspecting the yard condition it was found that ‘Y’ phase H.V side LA of 100 MVA Auto Tr. No. II had flashed over.

P. Details of Tests done after failure : Test could not be conducted as LA had flashed over.

Q. Probable cause of failure : Internal fault might have damaged the LA.

99. Failure of 400 kV LA at 400 kV Panipat substation of BBMB.

A. Name of Substation : 400kV GSS PANIPAT

B. Utility/Owner of substation : BBMB

C. Faulty Equipment : LA

D. Rating : 400kV voltage class

E. Make : CGL

F. Sr. No. : 28554

G. Year of manufacturing : 2004

H. Year of commissioning : 2006 (30th March)

I. Date and time of occurrence/discovery of fault : 19-09-2016 at 1406 hrs.

J. Information received in CEA : 13.10.16

K. Fault discovered during : During operation

L. Present condition of equipment : Replaced with new LA (LAMCO make, Sr. No.112, year of mfg.2005 and commissioned on 20-09-2016 at 0010 Hrs.)

M. Details of previous maintenance : Regularly maintained as per schedule
N. Details of previous failure : Nil

O. Sequence of events/ Description of failure : On 19.09.2016 at about 1406 hrs, 400kV PANIPAT – DADRI-II line tripped off. After inspection of switch yard, the B- phase LA of said line was found to be burst.

P. Details of Tests done after failure : No test possible as LA had burst

Q. Observations : NA

R. Probable cause of failure : Internal fault could be the probable cause of failure.

100. Failure of R-ph LA at 400 kV Alamathy substation of TANTRANSCO

A Name of Substation : 400 kV Alamathy substation

B Utility/Owner of substation : TANTRANSCO

C Faulty Equipment : R-Phase LA of 230 kV Mosur Feeder

D Rating : 216 kV, 10 kAₚ

E Make : Crompton Greaves Ltd

F Sr. No. : 218206

G Year of manufacturing : 2003

H Year of commissioning : 2006

I Date and time of occurrence/discovery of fault : 26.05.2016 at 1650 Hrs.

J Information received in CEA : 20.06.16

K Fault discovered during : Operation

L Present condition of equipment : Replaced

M Details of previous maintenance : IR value of each stack was measured and tightness checked on 26.05.2016.
Details of previous failure: Nil

Sequence of events/Description of failure:
On 26.05.2016 at 1650 hrs., heavy sound and smoke was observed in LA and following relays operated in 230 kV Mosur feeder:
Aux. relay: 27 R, Y, B
86 M1A, B, C
86 M2 A, B, C
79X. back up imp. Relay: 30 D, 30 F.

Details of Tests done after failure:
Insulator flashed out on the 2 stacks over, hence tests could not be carried out.

Observations:
Probable cause of failure:
Internal fault could be the cause of failure. No information is available about periodic monitoring of leakage current and insulation resistance.

101. Failure of 230 kV B phase LA of 230 kV Echur-Arni feeder at 230 kV Echur substation of TANTRANSCO

A. Name of Substation: 230 kV Echur Substation
B. Utility/Owner of substation: TANTRANSCO
C. Faulty Equipment: LA (B phase of Echur-Arni feeder)
D. Rating: 230 kV
E. Make: OBLUM
F. Sr. No.: 01
G. Year of manufacturing: Information not available
H. Year of commissioning: 2016 (August 8th)
I. Date and time of occurrence/discovery of fault: 13.12.2016 @ 01:44 hrs
J. Information received in CEA: 04.01.2017
K. Fault discovered during: Operation
L. Present condition of equipment: Replaced
M. Details of previous maintenance: Periodical maintenance was carried out.

N. Details of previous failure: Nil

O. Sequence of events/Description of failure:
 On 13.12.2016 at 01:44 hrs, heavy bursting sound was heard at 230 kV Arni feeder side. The jumpers of 230 kV LA with surge monitor snapped from the equipment.

P. Details of Tests done after failure: Not applicable, as LA burst.

Q. Probable cause of failure: LA burst due to Vardha Cyclone.

102. Failure of 198 kV R phase LA of Jamalpur-Sangrur I at 220 kV Jamalpur substation of BBMB

A. Name of Substation: 220kV Sub Station, Jamalpur

B. Utility/Owner of substation: BBMB

C. Faulty Equipment: 198 kV R phase LA of 220 kV Jamalpur-Sangrur-I feeder

D. Rating: 198 kV

E. Make: CGL

F. Sr. No.: 51884

G. Year of manufacturing: 2006

H. Year of commissioning: 2006 (Oct. 18th)

I. Date and time of occurrence/discovery of fault: 25.04.2016 At 1804 Hrs.

J. Information received in CEA: 25.05.2016

K. Fault discovered during: Operation

L. Present condition of equipment: Replaced with new LAMCO make LA
M. Details of previous maintenance: Last maintenance was carried out on 25.04.2016. Maintenance activities need to be elaborated.

N. Details of previous failure: Nil

O. Sequence of events/Description of failure: On 25.04.2016 at 1804 hrs., 198 kV R Phase LA of Jamalpur-Sangrur Ckt I got damaged with huge sound & smoke while closing the circuit breaker from Sangrur end.

P. Details of Tests done after failure: As the LA had burst, the tests could not be carried out.

Q. Probable cause of failure: It appears that switching operation might have stressed already weekend insulation beyond its withstand capacity. Failure might be the reason of failure.

103. Failure of R-ph LA of Ongole feeder at 220 kV Nellore substation of APTRANSCO

A. Name of Substation: 220 kV Nellore substation

B. Utility/Owner of substation: APTRANSCO

C. Faulty Equipment: R-phase LA of Nellore-Ongole feeder

D. Rating: 220kV

E. Make: ELPRO

F. Sr. No.: Information not available

G. Year of manufacturing: 1972

H. Year of commissioning: 1980 (31st March)

I. Date and time of occurrence/discovery of fault: 18.05.2016 (time of failure is not available)

J. Information received in: 28.06.16 CEA

K. Fault discovered during: Operation

L. Present condition of equipment: To be replaced
<table>
<thead>
<tr>
<th></th>
<th>Details of previous maintenance</th>
<th>Last Quarterly maintenance done on 14.03.2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Details of previous failure</td>
<td>Information not available</td>
</tr>
<tr>
<td>O</td>
<td>Sequence of events/Description of failure</td>
<td>On 18.05.16, R-ph LA of Nellore- Ongole feeder flashed over while in operation.</td>
</tr>
<tr>
<td>P</td>
<td>Details of Tests done after failure</td>
<td>No tests could be conducted as LA flashed over</td>
</tr>
<tr>
<td>Q</td>
<td>Observations</td>
<td>Lightning was observed during failure</td>
</tr>
<tr>
<td>R</td>
<td>Probable cause of failure</td>
<td>The LA had served for 36 years. Weakening of insulation due to lightning and ageing could have caused the flashover in the LA.</td>
</tr>
</tbody>
</table>
COUPLING CAPACITORS

104. Failure of B phase Coupling Capacitor of 230 kV NCTPS feeder at 230 kV Gummidipoondi substation of TANTRANSCO

<table>
<thead>
<tr>
<th>A. Name of Substation</th>
<th>230 kV Gummidipoondi substation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Utility/Owner of substation</td>
<td>TANTRANSCO</td>
</tr>
<tr>
<td>C. Faulty Equipment</td>
<td>Coupling capacitor (B phase of NCTPS feeder)</td>
</tr>
<tr>
<td>D. Rating</td>
<td>230 kV</td>
</tr>
<tr>
<td>E. Make</td>
<td>CGL</td>
</tr>
<tr>
<td>F. Sr. No.</td>
<td>8817</td>
</tr>
<tr>
<td>G. Year of manufacturing</td>
<td>1996</td>
</tr>
<tr>
<td>H. Year of commissioning</td>
<td>2001</td>
</tr>
<tr>
<td>I. Date and time of occurrence/discovery of fault</td>
<td>30.11.2015 at 14:35 hrs</td>
</tr>
<tr>
<td>J. Information received in CEA</td>
<td>03.03.2016</td>
</tr>
<tr>
<td>K. Fault discovered during</td>
<td>Operation</td>
</tr>
<tr>
<td>L. Present condition of equipment</td>
<td>Daamaged</td>
</tr>
<tr>
<td>M. Details of previous maintenance</td>
<td>Last scheduled maintenance was carried out on 01.10.2015.</td>
</tr>
<tr>
<td>N. Details of previous failure</td>
<td>Nil</td>
</tr>
<tr>
<td>O. Sequence of events/Description of failure</td>
<td>On 30.11.2015 at 14:35 hrs, B phase Coupling Capacitor burst and heavy smoke was formed. Distance protection had operated. There was heavy rain and lightning at the time of failure. After isolating the B-phase coupling capacitor, 230 kV NCPTS feeder was put back in service on 01.12.2015.</td>
</tr>
<tr>
<td>P. Details of Tests done after failure</td>
<td>Not possible as the coupling capacitor was burst.</td>
</tr>
</tbody>
</table>
Q. Probable cause of failure: Internal fault could be the reason of failure.

105. Failure of R-ph Coupling Capacitor of 220kV Dhuvaran Line at 220 kV Vartej substation of GETCO

A. Name of Substation : 220 kV Vartej Substation

B. Utility/Owner of substation : GETCO

C. Faulty Equipment : Coupling Capacitor (R phase of Dhuvaran line)

D. Rating : 220 kV

E. Make : WS Insulators

F. Sr. No. : 801021

G. Year of manufacturing : 1980

H. Year of commissioning : 1984 (Nov. 7th)

I. Date and time of occurrence/discovery of fault : 11.11.2015 at 19:53 Hrs.

J. Information received in CEA : 8.12.2015

K. Fault discovered during : Operation

L. Present condition of equipment : Replaced

M. Details of previous maintenance : On date 01.11.2015, porcelain was cleaned by cloth, clamp connector tightening work carried out. Earthing connection also checked and found OK. HF terminal also checked.

N. Details of previous failure : Information not available

O. Sequence of events/Description of failure : On 11.11.2015, R-phase coupling capacitor failed/blasted with fire. Porcelain burst into many pieces & spread all over the switchyard. The 220 kV Vartej-Dhuvaran line tripped from both ends.

Vartej end relay: R-Y-B to Earth, zone 1 distance – 0 km.
Dhuvaran end relay: R-Y-B to earth, distance – 164.1 km

P. Details of Tests done after failure : As the equipment burst, post failure tests were not possible.

Q. Probable cause of failure : The Coupling capacitor had served for 31 years. Ageing might be a reason of failure.